In this paper we analyze the stability of the problem of performing a rational QZ$step with a shift that is an eigenvalue of a given regular pencil H-lambda K in unreduced Hessenberg-Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg-Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets ``blurred'' and precludes the deflation of the given shift at the top of the pencil. In this paper we show that when we first compute the corresponding eigenvector to sufficient accuracy, then the rational QZ step can be constructed using this eigenvector, so that the exact deflation is also obtained in finite-precision.

Rational QZ Steps with perfect shifts

Nicola Mastronardi
Co-primo
Membro del Collaboration Group
;
2024

Abstract

In this paper we analyze the stability of the problem of performing a rational QZ$step with a shift that is an eigenvalue of a given regular pencil H-lambda K in unreduced Hessenberg-Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg-Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets ``blurred'' and precludes the deflation of the given shift at the top of the pencil. In this paper we show that when we first compute the corresponding eigenvector to sufficient accuracy, then the rational QZ step can be constructed using this eigenvector, so that the exact deflation is also obtained in finite-precision.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
generalized eigenvalues
perfect shift
RQZ algorithm
File in questo prodotto:
File Dimensione Formato  
RNMP_NA_2023.pdf

accesso aperto

Descrizione: PDF
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact