High coastal sectors constitute the most widespread coastal environment and, under the present accelerated sea-level rise scenario, are suffering huge impacts in terms of erosion. The aim of this paper is the proposal of a new methodological approach for the assessment of their susceptibility to erosive processes. The method is based on the combination of two matrices, i.e., a matrix considering the main physical elements (essentially morphological and geotechnical characteristics) that determine the proneness to erosion of a specific high coastal sector, and a forcing matrix, which describes the forcing agents affecting the considered sector. Firstly, several variables were selected to construct each one of the two matrices according to existing studies and, in a second step, they were interpolated to obtain the susceptibility matrix (CSIx). The approach was applied to Procida Island and Cilento promontory, both located in southern Italy. Results obtained were validated by comparing them with cliff retreat data obtained by means of aerial photographs and satellite images. The analysis shows that the greater part of the analyzed high coastal sectors belongs to the high-susceptibility class due to the combination of adverse morphological, geotechnical and forcing characteristics. Such sectors can be considered "hotspots" that require an increase in monitoring programs and, at places, urgent protective actions.

A Methodological Tool to Assess Erosion Susceptibility of High Coastal Sectors: Case Studies from Campania Region (Southern Italy)

Matano Fabio;
2023

Abstract

High coastal sectors constitute the most widespread coastal environment and, under the present accelerated sea-level rise scenario, are suffering huge impacts in terms of erosion. The aim of this paper is the proposal of a new methodological approach for the assessment of their susceptibility to erosive processes. The method is based on the combination of two matrices, i.e., a matrix considering the main physical elements (essentially morphological and geotechnical characteristics) that determine the proneness to erosion of a specific high coastal sector, and a forcing matrix, which describes the forcing agents affecting the considered sector. Firstly, several variables were selected to construct each one of the two matrices according to existing studies and, in a second step, they were interpolated to obtain the susceptibility matrix (CSIx). The approach was applied to Procida Island and Cilento promontory, both located in southern Italy. Results obtained were validated by comparing them with cliff retreat data obtained by means of aerial photographs and satellite images. The analysis shows that the greater part of the analyzed high coastal sectors belongs to the high-susceptibility class due to the combination of adverse morphological, geotechnical and forcing characteristics. Such sectors can be considered "hotspots" that require an increase in monitoring programs and, at places, urgent protective actions.
2023
Istituto di Scienze Marine - ISMAR
geomorphology
high coast
susceptibility index
relative sea level rise
Cilento
Procida Island
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact