A general expression for the strain energy of a homogeneous, isotropic, plane extensible elastica with an arbitrary undeformed configuration is derived. This expression appears to be suitable for one-dimensional models of polymers or vesicles, the natural configuration of which is characterized by locally changing curvature. In a linear setting, we derive the macroscopic stress-strain relations, providing an universal criterion for the neutral curve location. In this respect, we further demonstrate that the neutral curve existence constitutes the fundamental requirement for the conformational dynamics of any inextensbile biological filament.
General theory for plane extensible elastica with arbitrary undeformed shape
Alessandro Taloni;Daniele Vilone;
2023
Abstract
A general expression for the strain energy of a homogeneous, isotropic, plane extensible elastica with an arbitrary undeformed configuration is derived. This expression appears to be suitable for one-dimensional models of polymers or vesicles, the natural configuration of which is characterized by locally changing curvature. In a linear setting, we derive the macroscopic stress-strain relations, providing an universal criterion for the neutral curve location. In this respect, we further demonstrate that the neutral curve existence constitutes the fundamental requirement for the conformational dynamics of any inextensbile biological filament.File | Dimensione | Formato | |
---|---|---|---|
prod_486064-doc_201576.pdf
accesso aperto
Descrizione: General theory for plane extensible elastica with arbitrary undeformed shape
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
959.53 kB
Formato
Adobe PDF
|
959.53 kB | Adobe PDF | Visualizza/Apri |
prod_486064-doc_201577.pdf
solo utenti autorizzati
Descrizione: Supplementary information
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
717.36 kB
Formato
Adobe PDF
|
717.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.