Pyrrolidinium-based (Pyr) ionic liquids (ILs) have been proposed as electrolyte components in lithium-ion batteries (LiBs), mainly due to their higher electrochemical stability and wider electrochemical window. Since they are not naturally electroactive, in order to allow their use in LiBs, it is necessary to mix the ionic liquids with lithium salts (Li). Li-PF6, Li-BF4, and Li-TFSI are among the lithium salts more frequently used in LiBs, and each anion, namely PF6 (hexafluorophosphate), BF4 (tetrafluoroborate), and TFSI (bis(trifluoromethanesulfonyl)azanide), has its own solvation characteristics and interaction profile with the pyrrolidinium ions. The size of Pyr cations, the anion size and symmetry, and cation-anion combinations influence the Li-ion solvation properties. In this work, we used molecular dynamics calculations to achieve a comprehensive view of the role of each cation-anion combination and of different fractions of lithium in the solutions to assess their relative advantage for Li-ion battery applications, by comparing the solvation and structural properties of the systems. This is the most-comprehensive work so far to consider pyrrolidinium-based ILs with different anions and different amounts of Li: from it, we can systematically determine the role of each constituent and its concentration on the structural and dynamic properties of the electrolyte solutions.

Structural and Dynamic Characterization of Li-Ionic Liquid Electrolyte Solutions for Application in Li-Ion Batteries: A Molecular Dynamics Approach

Rossella F;Degoli E;Ruini A;Magri R
2023

Abstract

Pyrrolidinium-based (Pyr) ionic liquids (ILs) have been proposed as electrolyte components in lithium-ion batteries (LiBs), mainly due to their higher electrochemical stability and wider electrochemical window. Since they are not naturally electroactive, in order to allow their use in LiBs, it is necessary to mix the ionic liquids with lithium salts (Li). Li-PF6, Li-BF4, and Li-TFSI are among the lithium salts more frequently used in LiBs, and each anion, namely PF6 (hexafluorophosphate), BF4 (tetrafluoroborate), and TFSI (bis(trifluoromethanesulfonyl)azanide), has its own solvation characteristics and interaction profile with the pyrrolidinium ions. The size of Pyr cations, the anion size and symmetry, and cation-anion combinations influence the Li-ion solvation properties. In this work, we used molecular dynamics calculations to achieve a comprehensive view of the role of each cation-anion combination and of different fractions of lithium in the solutions to assess their relative advantage for Li-ion battery applications, by comparing the solvation and structural properties of the systems. This is the most-comprehensive work so far to consider pyrrolidinium-based ILs with different anions and different amounts of Li: from it, we can systematically determine the role of each constituent and its concentration on the structural and dynamic properties of the electrolyte solutions.
2023
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
electrolyte solutions
transference number
structural properties
File in questo prodotto:
File Dimensione Formato  
prod_484972-doc_200758.pdf

accesso aperto

Descrizione: Published paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact