The authors report the use of the dressed chopped random basis optimal control algorithm to realize time-reversal procedures. The latter are aimed for the implementation of quantum undo operations in quantum technology contexts as quantum computing and quantum communications. The last performed operation can be time-reversed via the undo command so as to perfectly restore a condition in which any new operation, chosen by the external user, can be applied. By generalizing this concept, the undo command can also allow for the reversing of a quantum operation in a generic time instant of the past. Here, thanks to optimal time-reversal routines, all these functionalities are experimentally implemented on the fivefold (Formula presented.) Hilbert space of a Bose-Einstein condensate of non-interacting Rb atoms in the ground state, realized with an atom chip. Each time-reversal transformation is attained by designing an optimal modulated radio frequency field, achieving on average an accuracy of around 92% in any performed test. The experimental results are accompanied by a thermodynamic interpretation based on the Loschmidt echo. These findings are expected to promote the implementation of time-reversal operations in a real scenario of gate-based quantum computing with a more complex structure than the five-level system considered here.

Experimental Realization of Optimal Time-Reversal on an Atom Chip for Quantum Undo Operations

Gherardini S;Cataliotti FS;Caruso F
2022

Abstract

The authors report the use of the dressed chopped random basis optimal control algorithm to realize time-reversal procedures. The latter are aimed for the implementation of quantum undo operations in quantum technology contexts as quantum computing and quantum communications. The last performed operation can be time-reversed via the undo command so as to perfectly restore a condition in which any new operation, chosen by the external user, can be applied. By generalizing this concept, the undo command can also allow for the reversing of a quantum operation in a generic time instant of the past. Here, thanks to optimal time-reversal routines, all these functionalities are experimentally implemented on the fivefold (Formula presented.) Hilbert space of a Bose-Einstein condensate of non-interacting Rb atoms in the ground state, realized with an atom chip. Each time-reversal transformation is attained by designing an optimal modulated radio frequency field, achieving on average an accuracy of around 92% in any performed test. The experimental results are accompanied by a thermodynamic interpretation based on the Loschmidt echo. These findings are expected to promote the implementation of time-reversal operations in a real scenario of gate-based quantum computing with a more complex structure than the five-level system considered here.
2022
Istituto Nazionale di Ottica - INO
Optimal control; Atom chip; Quantum undo operations; Entropy rectification; Time-reversal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/463722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact