Polymeric permselective films are frequently used for amperometric biosensors to prevent electroactive interference present in the target matrix. Phenylenediamines are the most commonly used for the deposition of shielding polymeric films against interfering species; however, even phenolic monomers have been utilized in the creation of these films for microsensors and biosensors. The purpose of this paper is to evaluate the performances of electrosynthesized polymers, layered by means of constant potential amperometry (CPA), of naturally occurring compound zingerone (ZING) and its dimer dehydrozingerone (ZING DIM), which was obtained by straight oxidative coupling reaction. The polymers showed interesting shielding characteristics against the main interfering species, such as ascorbic acid (AA): actually, polyZING exhibited an AA shielding aptitude comprised between 77.6 and 99.6%, comparable to that obtained with PPD. Moreover, a marked capability of increased monitoring of hydrogen peroxide (HP), when data were compared with bare metal results, was observed. In particular, polyZING showed increases ranging between 55.6 and 85.6%. In the present work, the molecular structures of the obtained polymers have been theorized and docking analyses were performed to understand their peculiar characteristics better. The structures were docked using the Lamarckian genetic algorithm (LGA). Glutamate biosensors based on those polymers were built, and their performances were compared with biosensors based on PPD, which is the most widespread polymer for the construction of amperometric biosensors.

Sustainable Electropolymerization of Zingerone and Its C2 Symmetric Dimer for Amperometric Biosensor Films

Dettori Maria Antonietta;Carta Paola;Dallocchio Roberto;Dessi Alessandro;Marceddu Salvatore;Fabbri Davide;
2023

Abstract

Polymeric permselective films are frequently used for amperometric biosensors to prevent electroactive interference present in the target matrix. Phenylenediamines are the most commonly used for the deposition of shielding polymeric films against interfering species; however, even phenolic monomers have been utilized in the creation of these films for microsensors and biosensors. The purpose of this paper is to evaluate the performances of electrosynthesized polymers, layered by means of constant potential amperometry (CPA), of naturally occurring compound zingerone (ZING) and its dimer dehydrozingerone (ZING DIM), which was obtained by straight oxidative coupling reaction. The polymers showed interesting shielding characteristics against the main interfering species, such as ascorbic acid (AA): actually, polyZING exhibited an AA shielding aptitude comprised between 77.6 and 99.6%, comparable to that obtained with PPD. Moreover, a marked capability of increased monitoring of hydrogen peroxide (HP), when data were compared with bare metal results, was observed. In particular, polyZING showed increases ranging between 55.6 and 85.6%. In the present work, the molecular structures of the obtained polymers have been theorized and docking analyses were performed to understand their peculiar characteristics better. The structures were docked using the Lamarckian genetic algorithm (LGA). Glutamate biosensors based on those polymers were built, and their performances were compared with biosensors based on PPD, which is the most widespread polymer for the construction of amperometric biosensors.
2023
Istituto di Chimica Biomolecolare - ICB - Sede Secondaria Sassari
Istituto di Scienze delle Produzioni Alimentari - ISPA - Sede Secondaria di Sassari
biosensor
zingerone
zingerone dimer
electropolymerization
molecular docking
File in questo prodotto:
File Dimensione Formato  
prod_486734-doc_202037.pdf

accesso aperto

Descrizione: Sustainable Electropolymerization of Zingerone and Its C2 Symmetric Dimer for Amperometric Biosensor Films
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.69 MB
Formato Adobe PDF
7.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/464235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact