The demand for a wide choice of food that is safe and palatable increases every day. Consumers do not accept off-flavors that have atypical odors resulting from internal deterioration or contamination by substances alien to the food. Odor response depends on the volatile organic compounds (VOCs), and their detection can provide information about food quality. Gas chromatography/mass spectrometry is the most powerful method available for the detection of VOC. However, it is laborious, costly, and requires the presence of a trained operator. To develop a faster analytic tool, we designed a non-Faradaic impedimetric biosensor for monitoring the presence of VOCs involved in food spoilage. The biosensor is based on the use of the pig odorant-binding protein (pOBP) as the molecular recognition element. We evaluated the affinity of pOBP for three different volatile organic compounds (1-octen-3-ol, trans-2-hexen-1-ol, and hexanal) related to food spoilage. We developed an electrochemical biosensor conducting impedimetric measurements in liquid and air samples. The impedance changes allowed us to detect each VOC sample at a minimum concentration of 0.1 mu M.

An Impedimetric Biosensor for Detection of Volatile Organic Compounds in Food

Capo Alessandro;Varriale Antonio;D'Auria Sabato;Staiano Maria
2023

Abstract

The demand for a wide choice of food that is safe and palatable increases every day. Consumers do not accept off-flavors that have atypical odors resulting from internal deterioration or contamination by substances alien to the food. Odor response depends on the volatile organic compounds (VOCs), and their detection can provide information about food quality. Gas chromatography/mass spectrometry is the most powerful method available for the detection of VOC. However, it is laborious, costly, and requires the presence of a trained operator. To develop a faster analytic tool, we designed a non-Faradaic impedimetric biosensor for monitoring the presence of VOCs involved in food spoilage. The biosensor is based on the use of the pig odorant-binding protein (pOBP) as the molecular recognition element. We evaluated the affinity of pOBP for three different volatile organic compounds (1-octen-3-ol, trans-2-hexen-1-ol, and hexanal) related to food spoilage. We developed an electrochemical biosensor conducting impedimetric measurements in liquid and air samples. The impedance changes allowed us to detect each VOC sample at a minimum concentration of 0.1 mu M.
2023
Istituto di Scienze dell'Alimentazione - ISA
odorant-binding protein (OBP)
volatile organic compounds (VOCs)
1-octen-3-ol
trans-2-hexen-1-ol
hexanal
food safety
biosensors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/464340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact