The AI-RIDE project proposes adopting an accelerated, online, and embedded Artificial Intelligence framework in motorcycle rider training, mainly targeting the Practical Driving Courses (PDC) and Driving License Exam (DLE) sessions verification tools. The project targets a disruptive innovation step in the context of driving learning techniques, significantly going beyond the state of the art of the current instruments used in the PDC and DLE ecosystem. This work presents last year's activities with the promising results obtained with the first working prototype.

AI-RIDE: a multi-camera system for the evaluation of motorcycle driving test

Leone GR;Righi M;Moroni D;
2023

Abstract

The AI-RIDE project proposes adopting an accelerated, online, and embedded Artificial Intelligence framework in motorcycle rider training, mainly targeting the Practical Driving Courses (PDC) and Driving License Exam (DLE) sessions verification tools. The project targets a disruptive innovation step in the context of driving learning techniques, significantly going beyond the state of the art of the current instruments used in the PDC and DLE ecosystem. This work presents last year's activities with the promising results obtained with the first working prototype.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
979-8-3503-7091-1
Camera-based systems
Edge computing
Trajectory analysis
Computer vision
Artificial intelligence
Motorcycle driving test
File in questo prodotto:
File Dimensione Formato  
prod_487480-doc_202564.pdf

accesso aperto

Descrizione: AI-RIDE: A Multi-Camera System for the Evaluation of Motorcycle Driving Test
Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 9.19 MB
Formato Adobe PDF
9.19 MB Adobe PDF Visualizza/Apri
AI-RIDE_A_Multi-Camera_System_for_the_Evaluation_of_Motorcycle_Driving_Test.pdf

non disponibili

Descrizione: AI-RIDE: A Multi-Camera System for the Evaluation of Motorcycle Driving Test
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/465104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact