: Given the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes. Taken together, these achievements could potentially prompt the design of therapeutic drugs useful for the development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy for P. aeruginosa.

Biophysical and Structural Characterization of the Interaction between Human Galectin-3 and the Lipopolysaccharide from Pseudomonas aeruginosa

Pirone, Luciano;Di Gaetano, Sonia;Saviano, Michele;Pedone, Emilia
2024

Abstract

: Given the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes. Taken together, these achievements could potentially prompt the design of therapeutic drugs useful for the development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy for P. aeruginosa.
2024
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Istituto di Cristallografia - IC
ITC
LPS
NMR
galectin-3
interaction studies
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/466171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact