In the field of Smart City applications, the analysis of urban data to detect city hotspots, i.e., regions where urban events (such as pollution peaks, virus infections, traffic spikes, and crimes) occur at a higher density than in the rest of the dataset, is becoming a common task. The detection of such hotspots can serve as a valuable organizational technique for framing detailed information about a metropolitan area, providing high-level spatial knowledge for planners, scien- tists, and policymakers. From the algorithmic viewpoint, classic density-based clustering algorithms are very effective in discovering hotspots characterized by homogeneous density; however, their application on multi-density data can produce inaccurate results. For such a reason, since metropolitan cities are characterized by areas with significantly variable densities, multi-density clustering approaches are more effective in discovering city hotspots. Moreover, the growing volumes of data collected in urban environments require the development of parallel approaches, in order to take advantage of scalable executions offered by Edge and Cloud environments. This paper describes the design and implementation of a parallel multi-density clustering algorithm aimed at analyzing high volumes of urban data in an efficient way. The experimental evaluation shows that the proposed parallel clustering approach takes out encouraging advantages in terms of execution time, speedup, and efficiency.

A Scalable Multi-density Clustering Approach to detect City Hotspots in a Smart City

Eugenio Cesario
;
Andrea Vinci
2024

Abstract

In the field of Smart City applications, the analysis of urban data to detect city hotspots, i.e., regions where urban events (such as pollution peaks, virus infections, traffic spikes, and crimes) occur at a higher density than in the rest of the dataset, is becoming a common task. The detection of such hotspots can serve as a valuable organizational technique for framing detailed information about a metropolitan area, providing high-level spatial knowledge for planners, scien- tists, and policymakers. From the algorithmic viewpoint, classic density-based clustering algorithms are very effective in discovering hotspots characterized by homogeneous density; however, their application on multi-density data can produce inaccurate results. For such a reason, since metropolitan cities are characterized by areas with significantly variable densities, multi-density clustering approaches are more effective in discovering city hotspots. Moreover, the growing volumes of data collected in urban environments require the development of parallel approaches, in order to take advantage of scalable executions offered by Edge and Cloud environments. This paper describes the design and implementation of a parallel multi-density clustering algorithm aimed at analyzing high volumes of urban data in an efficient way. The experimental evaluation shows that the proposed parallel clustering approach takes out encouraging advantages in terms of execution time, speedup, and efficiency.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
multi density-based clustering, parallel data mining, smart city
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167739X24001122-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/467264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact