We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core–shell nanowires under a magnetic field, B, up to 30 T and at temperatures in the range 4.2–200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing B. The doublet accounts for spin-polarized currents through the Zeeman split channels of the InAs (GaSb) conduction (valence) band and exhibits strong anisotropy with respect to B orientation and marked temperature dependence. Envelope function approximation and a semiclassical (WKB) approach allow to compute the magnetic quantum states of InAs and GaSb sections of the nanowire and to estimate the B-dependent tunneling current across the broken-gap interface. Disentangling different magneto-transport channels and a thermally activated valence-to-valence band transport current, we extract the g-factor from the spin-up and spin-down dI/dV branch dispersion, revealing a giant, strongly anisotropic g-factor in excess of 60 (100) for the radial (tilted) field configurations.
Spin-Resolved Magneto-Tunneling and Giant Anisotropic g-Factor in Broken Gap InAs-GaSb Core–Shell Nanowires
Rocci, Mirko;Demontis, Valeria;Zannier, Valentina;Sorba, Lucia;Bertoni, Andrea;Goldoni, Guido;Rossella, Francesco
2024
Abstract
We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core–shell nanowires under a magnetic field, B, up to 30 T and at temperatures in the range 4.2–200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing B. The doublet accounts for spin-polarized currents through the Zeeman split channels of the InAs (GaSb) conduction (valence) band and exhibits strong anisotropy with respect to B orientation and marked temperature dependence. Envelope function approximation and a semiclassical (WKB) approach allow to compute the magnetic quantum states of InAs and GaSb sections of the nanowire and to estimate the B-dependent tunneling current across the broken-gap interface. Disentangling different magneto-transport channels and a thermally activated valence-to-valence band transport current, we extract the g-factor from the spin-up and spin-down dI/dV branch dispersion, revealing a giant, strongly anisotropic g-factor in excess of 60 (100) for the radial (tilted) field configurations.File | Dimensione | Formato | |
---|---|---|---|
clericò-et-al-2024-spin-resolved-magneto-tunneling-and-giant-anisotropic-g-factor-in-broken-gap-inas-gasb-core-shell.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.