The present work intends to provide a closer look at histamine in Drosophila. This choice is motivated firstly because Drosophila has proven over the years to be a very simple, but powerful, model organism abundantly assisting scientists in explaining not only normal functions, but also derangements that occur in higher organisms, not excluding humans. Secondly, because histamine has been demonstrated to be a pleiotropic master molecule in pharmacology and immunology, with increasingly recognized roles also in the nervous system. Indeed, it interacts with various neurotransmitters and controls functions such as learning, memory, circadian rhythm, satiety, energy balance, nociception, and motor circuits, not excluding several pathological conditions. In view of this, our review is focused on the knowledge that the use of Drosophila has added to the already vast histaminergic field. In particular, we have described histamine's actions on photoreceptors sustaining the visual system and synchronizing circadian rhythms, but also on temperature preference, courtship behavior, and mechanosensory transmission. In addition, we have highlighted the pathophysiological consequences of mutations on genes involved in histamine metabolism and signaling. By promoting critical discussion and further research, our aim is to emphasize and renew the importance of histaminergic research in biomedicine through the exploitation of Drosophila, hopefully extending the scientific debate to the academic, industry, and general public audiences.

A Closer Look at Histamine in Drosophila

Cinzia Volonté
;
Francesco Liguori
;
2024

Abstract

The present work intends to provide a closer look at histamine in Drosophila. This choice is motivated firstly because Drosophila has proven over the years to be a very simple, but powerful, model organism abundantly assisting scientists in explaining not only normal functions, but also derangements that occur in higher organisms, not excluding humans. Secondly, because histamine has been demonstrated to be a pleiotropic master molecule in pharmacology and immunology, with increasingly recognized roles also in the nervous system. Indeed, it interacts with various neurotransmitters and controls functions such as learning, memory, circadian rhythm, satiety, energy balance, nociception, and motor circuits, not excluding several pathological conditions. In view of this, our review is focused on the knowledge that the use of Drosophila has added to the already vast histaminergic field. In particular, we have described histamine's actions on photoreceptors sustaining the visual system and synchronizing circadian rhythms, but also on temperature preference, courtship behavior, and mechanosensory transmission. In addition, we have highlighted the pathophysiological consequences of mutations on genes involved in histamine metabolism and signaling. By promoting critical discussion and further research, our aim is to emphasize and renew the importance of histaminergic research in biomedicine through the exploitation of Drosophila, hopefully extending the scientific debate to the academic, industry, and general public audiences.
2024
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Carcinine
Circadian rhythm
Courtship behavior
Histamine receptor
Histamine transporter
Histidine decarboxylase
Mechanosensory transmission
Photoreceptor
Temperature sensing
Visual transmission
File in questo prodotto:
File Dimensione Formato  
2024 Volonté et al IJMS.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/469661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact