Traditional genre-based approaches for book recommendations face challenges due to the vague definition of genres. To overcome this, we propose a novel task called Book Author Prediction, where we predict the author of a book based on user-generated reviews’ writing style. To this aim, we first introduce the ‘Literary Voices Corpus’ (LVC), a dataset of Italian book reviews, and use it to train and test machine learning models. Our study contributes valuable insights for developing user-centric systems that recommend leisure readings based on individual readers’ interests and writing styles.

Unmasking the Wordsmith: Revealing Author Identity through Reader Reviews

Chiara Alzetta;Felice Dell’Orletta;Chiara Fazzone;Alessio Miaschi;Giulia Venturi
2023

Abstract

Traditional genre-based approaches for book recommendations face challenges due to the vague definition of genres. To overcome this, we propose a novel task called Book Author Prediction, where we predict the author of a book based on user-generated reviews’ writing style. To this aim, we first introduce the ‘Literary Voices Corpus’ (LVC), a dataset of Italian book reviews, and use it to train and test machine learning models. Our study contributes valuable insights for developing user-centric systems that recommend leisure readings based on individual readers’ interests and writing styles.
2023
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/470921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact