In the ever-evolving landscape of modern agriculture, the integration of advanced technologies has become indispensable for optimizing crop management and ensuring sustainable food production. This paper presents the development and implementation of a real-time AI-assisted push-broom hyperspectral system for plant identification. The push-broom hyperspectral technique, coupled with artificial intelligence, offers unprecedented detail and accuracy in crop monitoring. This paper details the design and construction of the spectrometer, including optical assembly and system integration. The real-time acquisition and classification system, utilizing an embedded computing solution, is also described. The calibration and resolution analysis demonstrates the accuracy of the system in capturing spectral data. As a test, the system was applied to the classification of plant leaves. The AI algorithm based on neural networks allows for the continuous analysis of hyperspectral data relative up to 720 ground positions at 50 fps.
Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture
Neri I.
;Caponi S.;Bonacci F.;Clementi G.;Ortenzi L.;Aisa S.;Mattarelli M.
2024
Abstract
In the ever-evolving landscape of modern agriculture, the integration of advanced technologies has become indispensable for optimizing crop management and ensuring sustainable food production. This paper presents the development and implementation of a real-time AI-assisted push-broom hyperspectral system for plant identification. The push-broom hyperspectral technique, coupled with artificial intelligence, offers unprecedented detail and accuracy in crop monitoring. This paper details the design and construction of the spectrometer, including optical assembly and system integration. The real-time acquisition and classification system, utilizing an embedded computing solution, is also described. The calibration and resolution analysis demonstrates the accuracy of the system in capturing spectral data. As a test, the system was applied to the classification of plant leaves. The AI algorithm based on neural networks allows for the continuous analysis of hyperspectral data relative up to 720 ground positions at 50 fps.File | Dimensione | Formato | |
---|---|---|---|
sensors-24-00344-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.88 MB
Formato
Adobe PDF
|
2.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.