Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2O3, SiO2, TiO2, SnO2, and HfO2, prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3O4 following the order of HfO2 > SnO2 > TiO2 > Al2O3, SiO2. An optimal HfO2 layer thickness of 12 nm enhances the Co3O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm−2 in 1 m H2SO4 electrolyte. Density f...
Optimal Coatings of Co3O4 Anodes for Acidic Water Electrooxidation
Magnano E.;
2023
Abstract
Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2O3, SiO2, TiO2, SnO2, and HfO2, prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3O4 following the order of HfO2 > SnO2 > TiO2 > Al2O3, SiO2. An optimal HfO2 layer thickness of 12 nm enhances the Co3O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm−2 in 1 m H2SO4 electrolyte. Density f...| File | Dimensione | Formato | |
|---|---|---|---|
|
Optimal Coatings of Co3O4 Anodes for Acidic Water Electrooxidation.pdf
accesso aperto
Descrizione: Optimal Coatings of Co3O4 Anodes for Acidic Water Electrooxidation
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.93 MB
Formato
Adobe PDF
|
2.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


