To determine the effect of isothermal structural change on the configurational and vibrational parts, the real component of the complex specific heat C-p(') of poly(styrene) at 3.33 mHz frequency was measured in its vitrification range during very slow cooling, heating, and during the isothermal annealing of its glassy state formed by rapid cooling. As the structure relaxes during annealing, C-p(') decreases asymptotically with time by at least 1%. This is attributed to mostly a decrease in the configurational contribution to C-p(') as the relaxation time of the alpha process increases and contributions from the Johari-Goldstein relaxation decrease. C-p(') of the structurally equilibrated state is closer to the vibrational C-p than the C-p(') for 3.33 mHz frequency measured for the slowest cooling at 1 K/h. The apparent specific heat C-p,C-app was also measured during cooling and heating of the annealed and the unannealed samples, and the data were analyzed in terms of the enthalpy loss and recovery with the spontaneously changing fictive temperature. A procedure is described for determining when the equilibrated state has been reached. The vibrational C-p is not greatly affected by the structural change toward equilibrium. Thus the configurational C-p is equal to the difference between the equilibrium liquid's and the nonequilibrium glass C-p. Consequences of thermoviscoelastic effects on the specific-heat spectroscopy have been discussed.

Vibrational and configurational specific heats during isothermal structural relaxation of a glass to equilibrium liquid

Tombari E;Ferrari C;Salvetti G;
2008

Abstract

To determine the effect of isothermal structural change on the configurational and vibrational parts, the real component of the complex specific heat C-p(') of poly(styrene) at 3.33 mHz frequency was measured in its vitrification range during very slow cooling, heating, and during the isothermal annealing of its glassy state formed by rapid cooling. As the structure relaxes during annealing, C-p(') decreases asymptotically with time by at least 1%. This is attributed to mostly a decrease in the configurational contribution to C-p(') as the relaxation time of the alpha process increases and contributions from the Johari-Goldstein relaxation decrease. C-p(') of the structurally equilibrated state is closer to the vibrational C-p than the C-p(') for 3.33 mHz frequency measured for the slowest cooling at 1 K/h. The apparent specific heat C-p,C-app was also measured during cooling and heating of the annealed and the unannealed samples, and the data were analyzed in terms of the enthalpy loss and recovery with the spontaneously changing fictive temperature. A procedure is described for determining when the equilibrated state has been reached. The vibrational C-p is not greatly affected by the structural change toward equilibrium. Thus the configurational C-p is equal to the difference between the equilibrium liquid's and the nonequilibrium glass C-p. Consequences of thermoviscoelastic effects on the specific-heat spectroscopy have been discussed.
2008
Istituto per i Processi Chimico-Fisici - IPCF
heat capacity
galss transition
File in questo prodotto:
File Dimensione Formato  
prod_39993-doc_34509.pdf

solo utenti autorizzati

Descrizione: Vibrational and configurational specific heats
Dimensione 452.52 kB
Formato Adobe PDF
452.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/47506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact