The G-quadruplex is a fascinating nucleic acid motif with implications in biology, medicine, and nanotechnologies. G-quadruplexes can form in the telomeres at the edges of chromosomes and in other guanine-rich regions of the genome. They can also be engineered for exploitation as biological materials for nanodevices. Their higher stiffness and higher charge transfer rates make them better candidates in nanodevices than duplex DNA. For the development of molecular nanowires, it is important to optimize electron transport along the wire axis. One powerful basis to do so is by manipulating the structure, based on known effects that structural changes have on electron transport. Here, we investigate such effects, by a combination of classical simulations of the structure and dynamics and quantum calculations of electronic couplings. We find that this structure-function relationship is complex. A single helix shape parameter alone does not embody such complexity, but rather a combination of distances and angles between stacked bases influences charge transfer efficiency. By analyzing linear combinations of shape descriptors for different topologies, we identify the structural features that most affect charge transfer efficiency. We discuss the transferability of the proposed model and the limiting effects of inherent flexibility.

The impact of G-quadruplex dynamics on inter-tetrad electronic couplings: a hybrid computational study

Di Felice, Rosa
2022

Abstract

The G-quadruplex is a fascinating nucleic acid motif with implications in biology, medicine, and nanotechnologies. G-quadruplexes can form in the telomeres at the edges of chromosomes and in other guanine-rich regions of the genome. They can also be engineered for exploitation as biological materials for nanodevices. Their higher stiffness and higher charge transfer rates make them better candidates in nanodevices than duplex DNA. For the development of molecular nanowires, it is important to optimize electron transport along the wire axis. One powerful basis to do so is by manipulating the structure, based on known effects that structural changes have on electron transport. Here, we investigate such effects, by a combination of classical simulations of the structure and dynamics and quantum calculations of electronic couplings. We find that this structure-function relationship is complex. A single helix shape parameter alone does not embody such complexity, but rather a combination of distances and angles between stacked bases influences charge transfer efficiency. By analyzing linear combinations of shape descriptors for different topologies, we identify the structural features that most affect charge transfer efficiency. We discuss the transferability of the proposed model and the limiting effects of inherent flexibility.
2022
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Istituto Nanoscienze - NANO
File in questo prodotto:
File Dimensione Formato  
Nandi_PCCP2022.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 968.29 kB
Formato Adobe PDF
968.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1978875.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 6.22 MB
Formato Adobe PDF
6.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/476402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact