Adaptive networks with time-varying connectivity, often called plasticity, provide a fundamental paradigm to model complex dynamical systems. In these systems, different groups of elements frequently exhibit different yet synchronized dynamics within each group. Here we propose a framework to study patterns of synchronous solutions in a large class of plastic networks and derive a general approach to analyze the stability of these solutions. This approach decouples the role of the network topology from that of the dynamic, thus leading to a dimensionality reduction of the stability problem and allowing us to investigate how adaptation affects the emergence of multi-stable patterns of synchronized activity. To illustrate its potentialities, we apply our method to three networks of oscillators, with distinct topology, dynamics, and adaptation rules. Our working framework encompasses a large class of heterogeneous multi-layer dynamical networks, connected (even with delays) via different plastic links, and can have a broad impact on the analysis of complex plastic networks.

Patterns of synchronized clusters in adaptive networks

Torcini A.;
2024

Abstract

Adaptive networks with time-varying connectivity, often called plasticity, provide a fundamental paradigm to model complex dynamical systems. In these systems, different groups of elements frequently exhibit different yet synchronized dynamics within each group. Here we propose a framework to study patterns of synchronous solutions in a large class of plastic networks and derive a general approach to analyze the stability of these solutions. This approach decouples the role of the network topology from that of the dynamic, thus leading to a dimensionality reduction of the stability problem and allowing us to investigate how adaptation affects the emergence of multi-stable patterns of synchronized activity. To illustrate its potentialities, we apply our method to three networks of oscillators, with distinct topology, dynamics, and adaptation rules. Our working framework encompasses a large class of heterogeneous multi-layer dynamical networks, connected (even with delays) via different plastic links, and can have a broad impact on the analysis of complex plastic networks.
2024
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
File Dimensione Formato  
s42005-024-01688-5.pdf

accesso aperto

Descrizione: Patterns of synchronized clusters in adaptive networks
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/481161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact