This paper presents a preliminary study for evaluating the quality of welds in thermomagnetic switches using 3D sensing and machine learning techniques. A 3D sensor based on laser triangulation is used to gather the point cloud of the component. The point cloud is then processed to extract hand-crafted signatures for binary classification: defective or non-defective component. Features such as Gaussian and mean curvatures, density, and quadric surface properties, are used for building these significant signatures. Different machine learning models, including decision trees, Support Vector Machines, k-nearest neighbors, random forests, ensemble classifiers, and Artificial Neural Networks, are trained using the built signatures to classify the weld as defective or non-defective. Preliminary results on actual data achieve high classification accuracy (>84%) on all the tested models.
Assessing Switch Weld Quality with 3D Sensing and Machine Learning
Patruno C.;Nitti M.;Cardellicchio A.;Mosca N.;Di Summa M.;Reno' V.
2023
Abstract
This paper presents a preliminary study for evaluating the quality of welds in thermomagnetic switches using 3D sensing and machine learning techniques. A 3D sensor based on laser triangulation is used to gather the point cloud of the component. The point cloud is then processed to extract hand-crafted signatures for binary classification: defective or non-defective component. Features such as Gaussian and mean curvatures, density, and quadric surface properties, are used for building these significant signatures. Different machine learning models, including decision trees, Support Vector Machines, k-nearest neighbors, random forests, ensemble classifiers, and Artificial Neural Networks, are trained using the built signatures to classify the weld as defective or non-defective. Preliminary results on actual data achieve high classification accuracy (>84%) on all the tested models.File | Dimensione | Formato | |
---|---|---|---|
Assessing switch weld quality with 3D sensing and machine learning.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.