As well-known, structuring knowledge and digital content has a tremendous potential to enhance meaningful learning. A straightforward approach is representing key concepts of the subject matter and organizing them in a knowledge structure by means of semantic relations. This results in hypergraphs with typed n-ary relationships, including the so-called prerequisite or propaedeutic relations among concepts. While extracting the whole concept graph from a textbook is our final goal, the focus of this paper is the identification of the propaedeutic relations among concepts. To this aim, we employ a method based on burst analysis and co-occurrence which recognizes, by means of temporal reasoning, prerequisite relations among concepts that share intense periods in the text. The experimental evaluation shows promising results for the extraction of propaedeutic relations without the support of external knowledge.

Towards the identification of propaedeutic relations in textbooks

Alzetta C.;
2019

Abstract

As well-known, structuring knowledge and digital content has a tremendous potential to enhance meaningful learning. A straightforward approach is representing key concepts of the subject matter and organizing them in a knowledge structure by means of semantic relations. This results in hypergraphs with typed n-ary relationships, including the so-called prerequisite or propaedeutic relations among concepts. While extracting the whole concept graph from a textbook is our final goal, the focus of this paper is the identification of the propaedeutic relations among concepts. To this aim, we employ a method based on burst analysis and co-occurrence which recognizes, by means of temporal reasoning, prerequisite relations among concepts that share intense periods in the text. The experimental evaluation shows promising results for the extraction of propaedeutic relations without the support of external knowledge.
Campo DC Valore Lingua
dc.authority.anceserie LECTURE NOTES IN COMPUTER SCIENCE en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Adorni G. en
dc.authority.people Alzetta C. en
dc.authority.people Koceva F. en
dc.authority.people Passalacqua S. en
dc.authority.people Torre I. en
dc.collection.id.s 8c50ea44-be95-498f-946e-7bb5bd666b7c *
dc.collection.name 02.01 Contributo in volume (Capitolo o Saggio) *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/12/03 16:15:42 -
dc.date.available 2024/12/03 16:15:42 -
dc.date.firstsubmission 2024/08/27 15:02:05 *
dc.date.issued 2019 -
dc.date.submission 2024/08/27 15:02:05 *
dc.description.abstracteng As well-known, structuring knowledge and digital content has a tremendous potential to enhance meaningful learning. A straightforward approach is representing key concepts of the subject matter and organizing them in a knowledge structure by means of semantic relations. This results in hypergraphs with typed n-ary relationships, including the so-called prerequisite or propaedeutic relations among concepts. While extracting the whole concept graph from a textbook is our final goal, the focus of this paper is the identification of the propaedeutic relations among concepts. To this aim, we employ a method based on burst analysis and co-occurrence which recognizes, by means of temporal reasoning, prerequisite relations among concepts that share intense periods in the text. The experimental evaluation shows promising results for the extraction of propaedeutic relations without the support of external knowledge. -
dc.description.allpeople Adorni, G.; Alzetta, C.; Koceva, F.; Passalacqua, S.; Torre, I. -
dc.description.allpeopleoriginal Adorni G.; Alzetta C.; Koceva F.; Passalacqua S.; Torre I. en
dc.description.fulltext none en
dc.description.international no en
dc.description.numberofauthors 5 -
dc.identifier.doi 10.1007/978-3-030-23204-7_1 en
dc.identifier.isbn 9783030232030 en
dc.identifier.scopus 2-s2.0-85067830304 en
dc.identifier.source scopus *
dc.identifier.uri https://hdl.handle.net/20.500.14243/493649 -
dc.language.iso eng en
dc.publisher.name Springer Verlag en
dc.relation.allauthors Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. en
dc.relation.firstpage 1 en
dc.relation.ispartofbook Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.relation.lastpage 13 en
dc.relation.numberofpages 13 en
dc.relation.volume 11625 en
dc.subject.keywords Knowledge structure -
dc.subject.keywords Relation extraction -
dc.subject.keywords Temporal reasoning -
dc.subject.singlekeyword Knowledge structure *
dc.subject.singlekeyword Relation extraction *
dc.subject.singlekeyword Temporal reasoning *
dc.title Towards the identification of propaedeutic relations in textbooks en
dc.type.driver info:eu-repo/semantics/bookPart -
dc.type.full 02 Contributo in Volume::02.01 Contributo in volume (Capitolo o Saggio) it
dc.type.miur 268 -
iris.orcid.lastModifiedDate 2024/12/03 16:15:42 *
iris.orcid.lastModifiedMillisecond 1733238942351 *
iris.scopus.extIssued 2019 -
iris.scopus.extTitle Towards the identification of propaedeutic relations in textbooks -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.doi 10.1007/978-3-030-23204-7_1 *
iris.unpaywall.isoa false *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.metadataCallLastModified 06/12/2025 04:02:58 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1764990178267 -
iris.unpaywall.oastatus closed *
scopus.authority.anceserie LECTURE NOTES IN COMPUTER SCIENCE###0302-9743 *
scopus.category 2614 *
scopus.category 1700 *
scopus.contributor.affiliation University of Genoa -
scopus.contributor.affiliation University of Genoa -
scopus.contributor.affiliation University of Genoa -
scopus.contributor.affiliation University of Genoa -
scopus.contributor.affiliation University of Genoa -
scopus.contributor.afid 60121711 -
scopus.contributor.afid 60121711 -
scopus.contributor.afid 60121711 -
scopus.contributor.afid 60121711 -
scopus.contributor.afid 60121711 -
scopus.contributor.auid 7003898289 -
scopus.contributor.auid 57192938832 -
scopus.contributor.auid 56406555300 -
scopus.contributor.auid 57204897245 -
scopus.contributor.auid 57220754587 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Giovanni -
scopus.contributor.name Chiara -
scopus.contributor.name Frosina -
scopus.contributor.name Samuele -
scopus.contributor.name Ilaria -
scopus.contributor.subaffiliation Department of Informatics;Bioengineering;Robotics and Systems Engineering; -
scopus.contributor.subaffiliation Department of Informatics;Bioengineering;Robotics and Systems Engineering; -
scopus.contributor.subaffiliation Department of Informatics;Bioengineering;Robotics and Systems Engineering; -
scopus.contributor.subaffiliation Department of Informatics;Bioengineering;Robotics and Systems Engineering; -
scopus.contributor.subaffiliation Department of Informatics;Bioengineering;Robotics and Systems Engineering; -
scopus.contributor.surname Adorni -
scopus.contributor.surname Alzetta -
scopus.contributor.surname Koceva -
scopus.contributor.surname Passalacqua -
scopus.contributor.surname Torre -
scopus.date.issued 2019 *
scopus.description.abstracteng As well-known, structuring knowledge and digital content has a tremendous potential to enhance meaningful learning. A straightforward approach is representing key concepts of the subject matter and organizing them in a knowledge structure by means of semantic relations. This results in hypergraphs with typed n-ary relationships, including the so-called prerequisite or propaedeutic relations among concepts. While extracting the whole concept graph from a textbook is our final goal, the focus of this paper is the identification of the propaedeutic relations among concepts. To this aim, we employ a method based on burst analysis and co-occurrence which recognizes, by means of temporal reasoning, prerequisite relations among concepts that share intense periods in the text. The experimental evaluation shows promising results for the extraction of propaedeutic relations without the support of external knowledge. *
scopus.description.allpeopleoriginal Adorni G.; Alzetta C.; Koceva F.; Passalacqua S.; Torre I. *
scopus.differences scopus.subject.keywords *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.doi 10.1007/978-3-030-23204-7_1 *
scopus.identifier.eissn 1611-3349 *
scopus.identifier.isbn 9783030232030 *
scopus.identifier.pui 628384336 *
scopus.identifier.scopus 2-s2.0-85067830304 *
scopus.journal.sourceid 25674 *
scopus.language.iso eng *
scopus.publisher.name Springer Verlag *
scopus.relation.conferencedate 2019 *
scopus.relation.conferencename 20th International Conference on Artificial Intelligence in Education, AIED 2019 *
scopus.relation.conferenceplace usa *
scopus.relation.firstpage 1 *
scopus.relation.lastpage 13 *
scopus.relation.volume 11625 *
scopus.subject.keywords Knowledge structure; Relation extraction; Temporal reasoning; *
scopus.title Towards the identification of propaedeutic relations in textbooks *
scopus.titleeng Towards the identification of propaedeutic relations in textbooks *
Appare nelle tipologie: 02.01 Contributo in volume (Capitolo o Saggio)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/493649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact