The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score.

Convolutional neural networks for sentiment analysis on Italian tweets

Sartiano D.;Alzetta C.;
2016

Abstract

The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score.
Campo DC Valore Lingua
dc.authority.anceserie CEUR WORKSHOP PROCEEDINGS en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Attardi G. en
dc.authority.people Sartiano D. en
dc.authority.people Alzetta C. en
dc.authority.people Semplici F. en
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di informatica e telematica - IIT *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 912 *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/11/25 10:25:33 -
dc.date.available 2024/11/25 10:25:33 -
dc.date.firstsubmission 2024/08/27 15:09:29 *
dc.date.issued 2016 -
dc.date.submission 2024/08/27 15:09:29 *
dc.description.abstracteng The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score. -
dc.description.allpeople Attardi, G.; Sartiano, D.; Alzetta, C.; Semplici, F. -
dc.description.allpeopleoriginal Attardi G.; Sartiano D.; Alzetta C.; Semplici F. en
dc.description.fulltext open en
dc.description.international no en
dc.description.numberofauthors 4 -
dc.identifier.doi 10.4000/books.aaccademia.1995 en
dc.identifier.isbn 9788899982553 en
dc.identifier.scopus 2-s2.0-85009285400 en
dc.identifier.source scopus *
dc.identifier.uri https://hdl.handle.net/20.500.14243/493652 -
dc.language.iso eng en
dc.publisher.name CEUR-WS en
dc.relation.conferencedate 2016 en
dc.relation.conferencename 3rd Italian Conference on Computational Linguistics, CLiC-it 2016 and 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, EVALITA 2016 en
dc.relation.conferenceplace ita en
dc.relation.firstpage 156 en
dc.relation.ispartofbook CEUR Workshop Proceedings of the 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, EVALITA 2016 en
dc.relation.lastpage 160 en
dc.relation.numberofpages 5 en
dc.relation.volume 1749 en
dc.subject.keywordseng convolutional networks -
dc.subject.keywordseng sentiment analysis -
dc.subject.singlekeyword convolutional networks *
dc.subject.singlekeyword sentiment analysis *
dc.title Convolutional neural networks for sentiment analysis on Italian tweets en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
iris.mediafilter.data 2025/04/16 03:51:39 *
iris.orcid.lastModifiedDate 2024/11/25 10:25:33 *
iris.orcid.lastModifiedMillisecond 1732526733596 *
iris.scopus.extIssued 2016 -
iris.scopus.extTitle Convolutional neural networks for sentiment analysis on Italian tweets -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost publisher *
iris.unpaywall.bestoaversion publishedVersion *
iris.unpaywall.doi 10.4000/books.aaccademia.1995 *
iris.unpaywall.hosttype publisher *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://doi.org/10.4000/books.aaccademia.1995 *
iris.unpaywall.license cc-by-nc-nd *
iris.unpaywall.metadataCallLastModified 28/11/2025 02:59:27 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1764295167712 -
iris.unpaywall.oastatus hybrid *
scopus.authority.anceserie CEUR WORKSHOP PROCEEDINGS###1613-0073 *
scopus.category 1700 *
scopus.contributor.affiliation Università di Pisa -
scopus.contributor.affiliation Università di Pisa -
scopus.contributor.affiliation Università di Pisa -
scopus.contributor.affiliation Università di Pisa -
scopus.contributor.afid 60028868 -
scopus.contributor.afid 60028868 -
scopus.contributor.afid 60028868 -
scopus.contributor.afid 60028868 -
scopus.contributor.auid 57207892569 -
scopus.contributor.auid 56041888500 -
scopus.contributor.auid 57192938832 -
scopus.contributor.auid 57192943540 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Giuseppe -
scopus.contributor.name Daniele -
scopus.contributor.name Chiara -
scopus.contributor.name Federica -
scopus.contributor.subaffiliation Dipartimento di Informatica; -
scopus.contributor.subaffiliation Dipartimento di Informatica; -
scopus.contributor.subaffiliation Dipartimento di Informatica; -
scopus.contributor.subaffiliation Dipartimento di Informatica; -
scopus.contributor.surname Attardi -
scopus.contributor.surname Sartiano -
scopus.contributor.surname Alzetta -
scopus.contributor.surname Semplici -
scopus.date.issued 2016 *
scopus.description.abstracteng The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score. *
scopus.description.allpeopleoriginal Attardi G.; Sartiano D.; Alzetta C.; Semplici F. *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.doi 10.4000/books.aaccademia.1995 *
scopus.identifier.pui 614074572 *
scopus.identifier.scopus 2-s2.0-85009285400 *
scopus.journal.sourceid 21100218356 *
scopus.language.iso eng *
scopus.publisher.name CEUR-WS *
scopus.relation.conferencedate 2016 *
scopus.relation.conferencename 3rd Italian Conference on Computational Linguistics, CLiC-it 2016 and 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, EVALITA 2016 *
scopus.relation.conferenceplace ita *
scopus.relation.volume 1749 *
scopus.title Convolutional neural networks for sentiment analysis on Italian tweets *
scopus.titleeng Convolutional neural networks for sentiment analysis on Italian tweets *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
File Dimensione Formato  
paper_027.pdf

accesso aperto

Licenza: Creative commons
Dimensione 212.79 kB
Formato Adobe PDF
212.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/493652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact