The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score.
Convolutional neural networks for sentiment analysis on Italian tweets
Sartiano D.;Alzetta C.;
2016
Abstract
The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.anceserie | CEUR WORKSHOP PROCEEDINGS | en |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.people | Attardi G. | en |
| dc.authority.people | Sartiano D. | en |
| dc.authority.people | Alzetta C. | en |
| dc.authority.people | Semplici F. | en |
| dc.collection.id.s | 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d | * |
| dc.collection.name | 04.01 Contributo in Atti di convegno | * |
| dc.contributor.appartenenza | Istituto di informatica e telematica - IIT | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 912 | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.date.accessioned | 2024/11/25 10:25:33 | - |
| dc.date.available | 2024/11/25 10:25:33 | - |
| dc.date.firstsubmission | 2024/08/27 15:09:29 | * |
| dc.date.issued | 2016 | - |
| dc.date.submission | 2024/08/27 15:09:29 | * |
| dc.description.abstracteng | The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score. | - |
| dc.description.allpeople | Attardi, G.; Sartiano, D.; Alzetta, C.; Semplici, F. | - |
| dc.description.allpeopleoriginal | Attardi G.; Sartiano D.; Alzetta C.; Semplici F. | en |
| dc.description.fulltext | open | en |
| dc.description.international | no | en |
| dc.description.numberofauthors | 4 | - |
| dc.identifier.doi | 10.4000/books.aaccademia.1995 | en |
| dc.identifier.isbn | 9788899982553 | en |
| dc.identifier.scopus | 2-s2.0-85009285400 | en |
| dc.identifier.source | scopus | * |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/493652 | - |
| dc.language.iso | eng | en |
| dc.publisher.name | CEUR-WS | en |
| dc.relation.conferencedate | 2016 | en |
| dc.relation.conferencename | 3rd Italian Conference on Computational Linguistics, CLiC-it 2016 and 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, EVALITA 2016 | en |
| dc.relation.conferenceplace | ita | en |
| dc.relation.firstpage | 156 | en |
| dc.relation.ispartofbook | CEUR Workshop Proceedings of the 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, EVALITA 2016 | en |
| dc.relation.lastpage | 160 | en |
| dc.relation.numberofpages | 5 | en |
| dc.relation.volume | 1749 | en |
| dc.subject.keywordseng | convolutional networks | - |
| dc.subject.keywordseng | sentiment analysis | - |
| dc.subject.singlekeyword | convolutional networks | * |
| dc.subject.singlekeyword | sentiment analysis | * |
| dc.title | Convolutional neural networks for sentiment analysis on Italian tweets | en |
| dc.type.driver | info:eu-repo/semantics/conferenceObject | - |
| dc.type.full | 04 Contributo in convegno::04.01 Contributo in Atti di convegno | it |
| dc.type.miur | 273 | - |
| iris.mediafilter.data | 2025/04/16 03:51:39 | * |
| iris.orcid.lastModifiedDate | 2024/11/25 10:25:33 | * |
| iris.orcid.lastModifiedMillisecond | 1732526733596 | * |
| iris.scopus.extIssued | 2016 | - |
| iris.scopus.extTitle | Convolutional neural networks for sentiment analysis on Italian tweets | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.bestoahost | publisher | * |
| iris.unpaywall.bestoaversion | publishedVersion | * |
| iris.unpaywall.doi | 10.4000/books.aaccademia.1995 | * |
| iris.unpaywall.hosttype | publisher | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.landingpage | https://doi.org/10.4000/books.aaccademia.1995 | * |
| iris.unpaywall.license | cc-by-nc-nd | * |
| iris.unpaywall.metadataCallLastModified | 28/11/2025 02:59:27 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1764295167712 | - |
| iris.unpaywall.oastatus | hybrid | * |
| scopus.authority.anceserie | CEUR WORKSHOP PROCEEDINGS###1613-0073 | * |
| scopus.category | 1700 | * |
| scopus.contributor.affiliation | Università di Pisa | - |
| scopus.contributor.affiliation | Università di Pisa | - |
| scopus.contributor.affiliation | Università di Pisa | - |
| scopus.contributor.affiliation | Università di Pisa | - |
| scopus.contributor.afid | 60028868 | - |
| scopus.contributor.afid | 60028868 | - |
| scopus.contributor.afid | 60028868 | - |
| scopus.contributor.afid | 60028868 | - |
| scopus.contributor.auid | 57207892569 | - |
| scopus.contributor.auid | 56041888500 | - |
| scopus.contributor.auid | 57192938832 | - |
| scopus.contributor.auid | 57192943540 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.name | Giuseppe | - |
| scopus.contributor.name | Daniele | - |
| scopus.contributor.name | Chiara | - |
| scopus.contributor.name | Federica | - |
| scopus.contributor.subaffiliation | Dipartimento di Informatica; | - |
| scopus.contributor.subaffiliation | Dipartimento di Informatica; | - |
| scopus.contributor.subaffiliation | Dipartimento di Informatica; | - |
| scopus.contributor.subaffiliation | Dipartimento di Informatica; | - |
| scopus.contributor.surname | Attardi | - |
| scopus.contributor.surname | Sartiano | - |
| scopus.contributor.surname | Alzetta | - |
| scopus.contributor.surname | Semplici | - |
| scopus.date.issued | 2016 | * |
| scopus.description.abstracteng | The paper describes our submission to the task 2 of Sentiment Polarity Classification in Italian Tweets at Evalita 2016. Our approach is based on a convolutional neural network that exploits both word embeddings and Sentiment Specific word embeddings. We also experimented a model trained with a distant supervised corpus. Our submission with Sentiment Specific word embeddings achieved the first official score. | * |
| scopus.description.allpeopleoriginal | Attardi G.; Sartiano D.; Alzetta C.; Semplici F. | * |
| scopus.document.type | cp | * |
| scopus.document.types | cp | * |
| scopus.identifier.doi | 10.4000/books.aaccademia.1995 | * |
| scopus.identifier.pui | 614074572 | * |
| scopus.identifier.scopus | 2-s2.0-85009285400 | * |
| scopus.journal.sourceid | 21100218356 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | CEUR-WS | * |
| scopus.relation.conferencedate | 2016 | * |
| scopus.relation.conferencename | 3rd Italian Conference on Computational Linguistics, CLiC-it 2016 and 5th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, EVALITA 2016 | * |
| scopus.relation.conferenceplace | ita | * |
| scopus.relation.volume | 1749 | * |
| scopus.title | Convolutional neural networks for sentiment analysis on Italian tweets | * |
| scopus.titleeng | Convolutional neural networks for sentiment analysis on Italian tweets | * |
| Appare nelle tipologie: | 04.01 Contributo in Atti di convegno | |
File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
paper_027.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
212.79 kB
Formato
Adobe PDF
|
212.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


