We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features.

Extracting Tuscan phonetic correspondences from dialect pronunciations automatically

Simonetta Montemagni;
2024

Abstract

We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features.
Campo DC Valore Lingua
dc.authority.ancejournal LANGUAGE DYNAMICS AND CHANGE (PRINT) en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.people Arne Rubehn en
dc.authority.people Simonetta Montemagni en
dc.authority.people and John Nerbonne en
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/12/06 16:57:44 -
dc.date.available 2024/12/06 16:57:44 -
dc.date.firstsubmission 2024/09/20 12:51:40 *
dc.date.issued 2024 -
dc.date.submission 2025/03/06 14:00:30 *
dc.description.abstracteng We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features. -
dc.description.allpeople Rubehn, Arne; Montemagni, Simonetta; John Nerbonne, And -
dc.description.allpeopleoriginal Arne Rubehn, Simonetta Montemagni, and John Nerbonne en
dc.description.fulltext open en
dc.description.international si en
dc.description.numberofauthors 3 -
dc.identifier.doi 10.1163/22105832-bja10034 en
dc.identifier.scopus 2-s2.0-85204999014 en
dc.identifier.source manual *
dc.identifier.uri https://hdl.handle.net/20.500.14243/500421 -
dc.identifier.url https://brill.com/view/journals/ldc/14/1/article-p1_1.xml?ebody=abstract/excerpt en
dc.language.iso eng en
dc.relation.firstpage 1 en
dc.relation.issue 1 en
dc.relation.lastpage 33 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 33 en
dc.relation.volume 14 en
dc.subject.keywordseng sound correspondence; dialectology; information theory; alignment; Tuscan dialects -
dc.subject.singlekeyword sound correspondence *
dc.subject.singlekeyword dialectology *
dc.subject.singlekeyword information theory *
dc.subject.singlekeyword alignment *
dc.subject.singlekeyword Tuscan dialects *
dc.title Extracting Tuscan phonetic correspondences from dialect pronunciations automatically en
dc.type.circulation Internazionale en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.impactfactor si en
dc.type.miur 262 -
dc.type.referee Esperti anonimi en
iris.mediafilter.data 2025/03/26 03:32:32 *
iris.orcid.lastModifiedDate 2025/03/06 17:07:37 *
iris.orcid.lastModifiedMillisecond 1741277257524 *
iris.scopus.extIssued 2024 -
iris.scopus.extTitle Extracting Tuscan phonetic correspondences from dialect pronunciations automatically -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.doi 10.1163/22105832-bja10034 *
iris.unpaywall.isoa false *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.metadataCallLastModified 02/05/2025 05:22:02 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1746156122540 -
iris.unpaywall.oastatus closed *
scopus.authority.ancejournal LANGUAGE DYNAMICS AND CHANGE (PRINT)###2210-5824 *
scopus.category 1203 *
scopus.category 3310 *
scopus.contributor.affiliation University of Passau -
scopus.contributor.affiliation cnr -
scopus.contributor.affiliation University of Tübingen -
scopus.contributor.afid 60014151 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60017246 -
scopus.contributor.auid 59148246400 -
scopus.contributor.auid 15056781100 -
scopus.contributor.auid 12241373400 -
scopus.contributor.country Germany -
scopus.contributor.country Italy -
scopus.contributor.country Germany -
scopus.contributor.dptid 129065856 -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Arne -
scopus.contributor.name Simonetta -
scopus.contributor.name John -
scopus.contributor.subaffiliation Multilingual Computational Linguistics; -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale “Antonio Zampolli”; -
scopus.contributor.subaffiliation -
scopus.contributor.surname Rubehn -
scopus.contributor.surname Montemagni -
scopus.contributor.surname Nerbonne -
scopus.date.issued 2024 *
scopus.description.abstracteng We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features. *
scopus.description.allpeopleoriginal Rubehn A.; Montemagni S.; Nerbonne J. *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.description.allpeopleoriginal *
scopus.document.type ar *
scopus.document.types ar *
scopus.identifier.doi 10.1163/22105832-bja10034 *
scopus.identifier.eissn 2210-5832 *
scopus.identifier.pui 2034691106 *
scopus.identifier.scopus 2-s2.0-85204999014 *
scopus.journal.sourceid 21100427651 *
scopus.language.iso eng *
scopus.publisher.name Brill Academic Publishers *
scopus.relation.issue 1 *
scopus.relation.volume 14 *
scopus.subject.keywords alignment; dialectology; information theory; sound correspondence; Tuscan dialects; *
scopus.title Extracting Tuscan phonetic correspondences from dialect pronunciations automatically *
scopus.titleeng Extracting Tuscan phonetic correspondences from dialect pronunciations automatically *
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
File Dimensione Formato  
ldc-article-p1_1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/500421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact