We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features.
Extracting Tuscan phonetic correspondences from dialect pronunciations automatically
Simonetta Montemagni;
2024
Abstract
We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.ancejournal | LANGUAGE DYNAMICS AND CHANGE (PRINT) | en |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.people | Arne Rubehn | en |
| dc.authority.people | Simonetta Montemagni | en |
| dc.authority.people | and John Nerbonne | en |
| dc.collection.id.s | b3f88f24-048a-4e43-8ab1-6697b90e068e | * |
| dc.collection.name | 01.01 Articolo in rivista | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.area | Non assegn | * |
| dc.date.accessioned | 2024/12/06 16:57:44 | - |
| dc.date.available | 2024/12/06 16:57:44 | - |
| dc.date.firstsubmission | 2024/09/20 12:51:40 | * |
| dc.date.issued | 2024 | - |
| dc.date.submission | 2025/03/06 14:00:30 | * |
| dc.description.abstracteng | We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features. | - |
| dc.description.allpeople | Rubehn, Arne; Montemagni, Simonetta; John Nerbonne, And | - |
| dc.description.allpeopleoriginal | Arne Rubehn, Simonetta Montemagni, and John Nerbonne | en |
| dc.description.fulltext | open | en |
| dc.description.international | si | en |
| dc.description.numberofauthors | 3 | - |
| dc.identifier.doi | 10.1163/22105832-bja10034 | en |
| dc.identifier.scopus | 2-s2.0-85204999014 | en |
| dc.identifier.source | manual | * |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/500421 | - |
| dc.identifier.url | https://brill.com/view/journals/ldc/14/1/article-p1_1.xml?ebody=abstract/excerpt | en |
| dc.language.iso | eng | en |
| dc.relation.firstpage | 1 | en |
| dc.relation.issue | 1 | en |
| dc.relation.lastpage | 33 | en |
| dc.relation.medium | ELETTRONICO | en |
| dc.relation.numberofpages | 33 | en |
| dc.relation.volume | 14 | en |
| dc.subject.keywordseng | sound correspondence; dialectology; information theory; alignment; Tuscan dialects | - |
| dc.subject.singlekeyword | sound correspondence | * |
| dc.subject.singlekeyword | dialectology | * |
| dc.subject.singlekeyword | information theory | * |
| dc.subject.singlekeyword | alignment | * |
| dc.subject.singlekeyword | Tuscan dialects | * |
| dc.title | Extracting Tuscan phonetic correspondences from dialect pronunciations automatically | en |
| dc.type.circulation | Internazionale | en |
| dc.type.driver | info:eu-repo/semantics/article | - |
| dc.type.full | 01 Contributo su Rivista::01.01 Articolo in rivista | it |
| dc.type.impactfactor | si | en |
| dc.type.miur | 262 | - |
| dc.type.referee | Esperti anonimi | en |
| iris.mediafilter.data | 2025/03/26 03:32:32 | * |
| iris.orcid.lastModifiedDate | 2025/03/06 17:07:37 | * |
| iris.orcid.lastModifiedMillisecond | 1741277257524 | * |
| iris.scopus.extIssued | 2024 | - |
| iris.scopus.extTitle | Extracting Tuscan phonetic correspondences from dialect pronunciations automatically | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.doi | 10.1163/22105832-bja10034 | * |
| iris.unpaywall.isoa | false | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.metadataCallLastModified | 02/05/2025 05:22:02 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1746156122540 | - |
| iris.unpaywall.oastatus | closed | * |
| scopus.authority.ancejournal | LANGUAGE DYNAMICS AND CHANGE (PRINT)###2210-5824 | * |
| scopus.category | 1203 | * |
| scopus.category | 3310 | * |
| scopus.contributor.affiliation | University of Passau | - |
| scopus.contributor.affiliation | cnr | - |
| scopus.contributor.affiliation | University of Tübingen | - |
| scopus.contributor.afid | 60014151 | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60017246 | - |
| scopus.contributor.auid | 59148246400 | - |
| scopus.contributor.auid | 15056781100 | - |
| scopus.contributor.auid | 12241373400 | - |
| scopus.contributor.country | Germany | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Germany | - |
| scopus.contributor.dptid | 129065856 | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.name | Arne | - |
| scopus.contributor.name | Simonetta | - |
| scopus.contributor.name | John | - |
| scopus.contributor.subaffiliation | Multilingual Computational Linguistics; | - |
| scopus.contributor.subaffiliation | Istituto di Linguistica Computazionale “Antonio Zampolli”; | - |
| scopus.contributor.subaffiliation | - | |
| scopus.contributor.surname | Rubehn | - |
| scopus.contributor.surname | Montemagni | - |
| scopus.contributor.surname | Nerbonne | - |
| scopus.date.issued | 2024 | * |
| scopus.description.abstracteng | We present a novel approach to identifying individual pairs of phonetic correspondences in a dataset of dialect pronunciations. This continues work identifying shibboleths (i.e., characteristic features of a given dialect), a category that has interested dialectology and that dialectometrical research has examined mostly in the form of categorical data or entire phonetic transcriptions. This article reaches into segmental sequences (phonetic transcriptions) to identify individual phonetic correspondences. We follow earlier work in examining how distinctive and how representative a given phonetic correspondence is for a selected group of varieties. We proceed from string alignments, and innovate in characterizing the important notions via information theory. Despite minor problems, the method improves on the generality of competing approaches and can be shown to be useful in detecting characteristic phonetic correspondences in Tuscan varieties. We argue that this facilitates deeper investigation into the relation between aggregating approaches to dialectology and approaches proceeding from features. | * |
| scopus.description.allpeopleoriginal | Rubehn A.; Montemagni S.; Nerbonne J. | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.description.allpeopleoriginal | * |
| scopus.document.type | ar | * |
| scopus.document.types | ar | * |
| scopus.identifier.doi | 10.1163/22105832-bja10034 | * |
| scopus.identifier.eissn | 2210-5832 | * |
| scopus.identifier.pui | 2034691106 | * |
| scopus.identifier.scopus | 2-s2.0-85204999014 | * |
| scopus.journal.sourceid | 21100427651 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | Brill Academic Publishers | * |
| scopus.relation.issue | 1 | * |
| scopus.relation.volume | 14 | * |
| scopus.subject.keywords | alignment; dialectology; information theory; sound correspondence; Tuscan dialects; | * |
| scopus.title | Extracting Tuscan phonetic correspondences from dialect pronunciations automatically | * |
| scopus.titleeng | Extracting Tuscan phonetic correspondences from dialect pronunciations automatically | * |
| Appare nelle tipologie: | 01.01 Articolo in rivista | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
ldc-article-p1_1.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.41 MB
Formato
Adobe PDF
|
4.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


