Transparent conductive oxides (TCO) have the unique characteristics of combining optical transparency with high electrical conductivity; such a property makes them uniquely alluring for applications in visible and infrared photonics. One of their most interesting features is the large sensitivity of their optical response to the doping level. We performed the active electrical manipulation of the dielectric properties of aluminum-doped ZnO (AZO), a TCO-based on Earth-Abundant elements. We actively tuned the optical and electric performances of AZO films by means of an applied voltage in a parallel-plate capacitor configuration, with SrTiO3 as the dielectric, and monitored the effect of charge injection/depletion by means of in-operando spectroscopic ellipsometry. Calculations of the optical response of the gated system allowed us to extract the spatially resolved variations in the dielectric function of the TCO and infer the injected/depleted charge profile at the interface.

In-Operando Optical Spectroscopy of Field-Effect-Gated Al-Doped ZnO

Benedetti S.;Di Bona A.;Canepa M.;Bisio F.
;
Bellingeri E.
2022

Abstract

Transparent conductive oxides (TCO) have the unique characteristics of combining optical transparency with high electrical conductivity; such a property makes them uniquely alluring for applications in visible and infrared photonics. One of their most interesting features is the large sensitivity of their optical response to the doping level. We performed the active electrical manipulation of the dielectric properties of aluminum-doped ZnO (AZO), a TCO-based on Earth-Abundant elements. We actively tuned the optical and electric performances of AZO films by means of an applied voltage in a parallel-plate capacitor configuration, with SrTiO3 as the dielectric, and monitored the effect of charge injection/depletion by means of in-operando spectroscopic ellipsometry. Calculations of the optical response of the gated system allowed us to extract the spatially resolved variations in the dielectric function of the TCO and infer the injected/depleted charge profile at the interface.
2022
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
active photonics
Al-doped zinc oxide
Debye length
spectroscopic ellipsometry
transparent conductive oxides
File in questo prodotto:
File Dimensione Formato  
sygletou-et-al-2023-in-operando-optical-spectroscopy-of-field-effect-gated-al-doped-zno.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/500461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact