Carbon Fiber Reinforced Plastic (CFRP) is going to assume more and more importance in mechanical and aerospace engineering in the near future. This is due to its intrinsic high lightness and resistance, if compared to traditional metallic materials. CFRP is characterized by a proper production and repair technology. The tool showed in this paper is conceived to repair and verify the restoration of such kind of material. Its application is limited to the first part of the repair process: in jargon the scarfing operation, otherwise called “defect removal”. This operation is similar to a high-speed grinding. For this reason, the designed tool can be easily applied to other contexts, such as sanding, polishing or deburring. Basically, the ScarfingTool is composed by a high-speed electro-spindle and a 3D smart snapshot sensor. This tool is conceived to be as light as possible to be installed on a light collaborative robot. Moreover, its specific design assures great compliance that, as needed, can be regulated. A high efficiency suction inlet completes the tool and guarantees a clean environment during operation.

Scarfingtool: an advanced tool to repair carbon fiber reinforced plastic

Simone Pio Negri
;
Massimiliano Nitti;Nicola Mosca;Vito Renò;Ettore Stella
2024

Abstract

Carbon Fiber Reinforced Plastic (CFRP) is going to assume more and more importance in mechanical and aerospace engineering in the near future. This is due to its intrinsic high lightness and resistance, if compared to traditional metallic materials. CFRP is characterized by a proper production and repair technology. The tool showed in this paper is conceived to repair and verify the restoration of such kind of material. Its application is limited to the first part of the repair process: in jargon the scarfing operation, otherwise called “defect removal”. This operation is similar to a high-speed grinding. For this reason, the designed tool can be easily applied to other contexts, such as sanding, polishing or deburring. Basically, the ScarfingTool is composed by a high-speed electro-spindle and a 3D smart snapshot sensor. This tool is conceived to be as light as possible to be installed on a light collaborative robot. Moreover, its specific design assures great compliance that, as needed, can be regulated. A high efficiency suction inlet completes the tool and guarantees a clean environment during operation.
2024
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA) Sede Secondaria Bari
Carbon Fiber Reinforced Plastic Repair, Scarfing Repair, Robotic Grinding, Robotic Sanding, Robotic Polishing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/506162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact