In this letter, a near infrared all-silicon (all-Si) photodetector integrated into a silicon-on-insulator waveguide is demonstrated. The device is based on the internal photoemission effect through a metal/Si Schottky junction placed transversally to the optical field confined into the waveguide. The technological steps utilized to fabricate the device allow an efficiently monolithic integration with complementary metal-oxide semiconductor compatible structures. Preliminary results show a responsivity of 0.08 mA/W at 1550 nm with a reverse bias of 1 V and an efficient behavior both in C and L band. Finally, an estimation of bandwidth for GHz range is deduced.
Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide
Casalino M;Sirleto L;Iodice M;Rendina I;Coppola G
2010
Abstract
In this letter, a near infrared all-silicon (all-Si) photodetector integrated into a silicon-on-insulator waveguide is demonstrated. The device is based on the internal photoemission effect through a metal/Si Schottky junction placed transversally to the optical field confined into the waveguide. The technological steps utilized to fabricate the device allow an efficiently monolithic integration with complementary metal-oxide semiconductor compatible structures. Preliminary results show a responsivity of 0.08 mA/W at 1550 nm with a reverse bias of 1 V and an efficient behavior both in C and L band. Finally, an estimation of bandwidth for GHz range is deduced.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.