Neuronal nicotinic acetylcholine receptors comprise a heterogeneous class of cationic channels that is present throughout the nervous system. These channels are involved both in physiological functions (including cognition, reward, motor activity and analgesia) and in pathological conditions such as Alzheimer's disease, Parkinson's disease, some forms of epilepsy, depression, autism and schizophrenia. They are also the targets of tobacco-smoking effects and addiction. Neuronal nicotinic acetylcholine receptors are pentamers of homomeric or heteromeric combinations of alpha (alpha 2-alpha 10) and beta (beta 2-beta 4) subunits, which have different pharmacological and biophysical properties and locations in the brain. The lack of subtype-specific ligands and the fact that many neuronal cells express multiple subtypes initially hampered the identification of the different native nicotinic acetylcholine receptor subtypes, but the increasing knowledge of subtype composition and roles will be of considerable interest for the development of new and clinically useful nicotinic acetylcholine receptor ligands

Brain nicotinic acetylcholine receptors: native subtypes and their relevance.

Gotti C;Clementi F
2006

Abstract

Neuronal nicotinic acetylcholine receptors comprise a heterogeneous class of cationic channels that is present throughout the nervous system. These channels are involved both in physiological functions (including cognition, reward, motor activity and analgesia) and in pathological conditions such as Alzheimer's disease, Parkinson's disease, some forms of epilepsy, depression, autism and schizophrenia. They are also the targets of tobacco-smoking effects and addiction. Neuronal nicotinic acetylcholine receptors are pentamers of homomeric or heteromeric combinations of alpha (alpha 2-alpha 10) and beta (beta 2-beta 4) subunits, which have different pharmacological and biophysical properties and locations in the brain. The lack of subtype-specific ligands and the fact that many neuronal cells express multiple subtypes initially hampered the identification of the different native nicotinic acetylcholine receptor subtypes, but the increasing knowledge of subtype composition and roles will be of considerable interest for the development of new and clinically useful nicotinic acetylcholine receptor ligands
2006
Istituto di Neuroscienze - IN -
SUBUNIT MESSENGER-RNAS
ALPHA-CONOTOXIN-MII
ALZHEIMERS-DISEASE
DOPAMINE RELEASE
PARKINSONS-DISEASE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/50921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact