A mixed approach with meta-modelling techniques and machine-learning algorithms is here applied to the minimization of the lap time of a Formula 1 race car. The fine tuning of the front wing is performed in order to optimize the car for each specific racetrack. This task is performed by a simplified model, which is trained by some high-fidelity fluid dynamic simulations and then extended to the complete design space. The resulting tool is reliable, fast and easy to use. The accuracy of the resulting speed profiles of the chosen car in comparison with available measurements is indicating the overall reliability of the procedure.
Role of the front wing/wheel setting-up on the optimal cornering performances of a Formula 1 car
Peri D.
Primo
;Di Mascio A.Secondo
2024
Abstract
A mixed approach with meta-modelling techniques and machine-learning algorithms is here applied to the minimization of the lap time of a Formula 1 race car. The fine tuning of the front wing is performed in order to optimize the car for each specific racetrack. This task is performed by a simplified model, which is trained by some high-fidelity fluid dynamic simulations and then extended to the complete design space. The resulting tool is reliable, fast and easy to use. The accuracy of the resulting speed profiles of the chosen car in comparison with available measurements is indicating the overall reliability of the procedure.File | Dimensione | Formato | |
---|---|---|---|
OptimalRaceCar-v4.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
7.74 MB
Formato
Adobe PDF
|
7.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.