Thyroid hormones (THs) are major regulators of biological processes essential for correct development and energy homeostasis. Although thyroid disruptors can deeply affect human health, the impact of exogenous chemicals and in particular mixture of chemicals on different aspects of thyroid development and metabolism is not yet fully understood. In this study we have used the highly versatile zebrafish model to assess the thyroid axis disrupting effects of cadmium (Cd) and dibenzothiophene (DBT), two environmental endocrine disruptors found to be significantly correlated in epidemiological co-exposure studies. Zebrafish embryos (5hpf) were exposed to low concentrations of Cd (from 0.05 to 2 μM) and DBT (from 0.05 to 1 μM) and to mixtures of them. A multilevel assessment of the pollutant effects has been obtained by combining in vivo morphological analyses allowed by the use of transgenic fluorescent lines with liquid chromatography mass spectrometry determination of TH levels and quantification of the expression levels of key genes involved in the Hypothalamic-Pituitary-Thyroid Axis (HPTA) and TH metabolism. Our results underscore for the first time an important synergistic toxic effect of these pollutants on embryonic development and thyroid morphology highlighting differences in the mechanisms through which they can adversely impact on multiple physiological processes of the HPTA and TH disposal influencing also heart geometry and function.

Thyroid disrupting effects of low-dose dibenzothiophene and cadmium in single or concurrent exposure: New evidence from a translational zebrafish model

Guzzolino E.
Primo
;
Forini F.
Formal Analysis
;
Gorini F.;Bianchi F.;Iervasi G.
Penultimo
;
Pitto L.
Ultimo
Supervision
2021

Abstract

Thyroid hormones (THs) are major regulators of biological processes essential for correct development and energy homeostasis. Although thyroid disruptors can deeply affect human health, the impact of exogenous chemicals and in particular mixture of chemicals on different aspects of thyroid development and metabolism is not yet fully understood. In this study we have used the highly versatile zebrafish model to assess the thyroid axis disrupting effects of cadmium (Cd) and dibenzothiophene (DBT), two environmental endocrine disruptors found to be significantly correlated in epidemiological co-exposure studies. Zebrafish embryos (5hpf) were exposed to low concentrations of Cd (from 0.05 to 2 μM) and DBT (from 0.05 to 1 μM) and to mixtures of them. A multilevel assessment of the pollutant effects has been obtained by combining in vivo morphological analyses allowed by the use of transgenic fluorescent lines with liquid chromatography mass spectrometry determination of TH levels and quantification of the expression levels of key genes involved in the Hypothalamic-Pituitary-Thyroid Axis (HPTA) and TH metabolism. Our results underscore for the first time an important synergistic toxic effect of these pollutants on embryonic development and thyroid morphology highlighting differences in the mechanisms through which they can adversely impact on multiple physiological processes of the HPTA and TH disposal influencing also heart geometry and function.
2021
Istituto di Fisiologia Clinica - IFC
Cadmium
Cardiac defects
Dibenzothiophene
Hypothalamic-pituitary-thyroid axis disruption
Thyroid hormone receptors
Zebrafish embryos
File in questo prodotto:
File Dimensione Formato  
Manuscript Guzzolino et al revised accettato.pdf

accesso aperto

Descrizione: Thyroid disrupting effects of low-dose dibenzothiophene and cadmium in single or concurrent exposure: New evidence from a translational zebrafish model
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 888
  • ???jsp.display-item.citation.isi??? 5
social impact