When collecting several data sets and heterogeneous data types on a given phenomenon of interest, the individual analysis of each data set will provide only a particular view of such phenomenon. Instead, integrating all the data may widen and deepen the results, offering a better view of the entire system. In the context of network integration, we propose the INet algorithm. INet assumes a similar network structure, representing latent variables in different network layers of the same system. Therefore, by combining individual edge weights and topological network structures, INet first constructs a Consensus Network that represents the shared information underneath the different layers to provide a global view of the entities that play a fundamental role in the phenomenon of interest. Then, it derives a Case Specific Network for each layer containing peculiar information of the single data type not present in all the others. We demonstrated good performance with our method through simulated data and detected new insights by analyzing biological and sociological datasets.

INet for network integration

Policastro, Valeria
;
Angelini, Claudia;Carissimo, Annamaria
2024

Abstract

When collecting several data sets and heterogeneous data types on a given phenomenon of interest, the individual analysis of each data set will provide only a particular view of such phenomenon. Instead, integrating all the data may widen and deepen the results, offering a better view of the entire system. In the context of network integration, we propose the INet algorithm. INet assumes a similar network structure, representing latent variables in different network layers of the same system. Therefore, by combining individual edge weights and topological network structures, INet first constructs a Consensus Network that represents the shared information underneath the different layers to provide a global view of the entities that play a fundamental role in the phenomenon of interest. Then, it derives a Case Specific Network for each layer containing peculiar information of the single data type not present in all the others. We demonstrated good performance with our method through simulated data and detected new insights by analyzing biological and sociological datasets.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Network, Integration, Consensus network, Multilayer network
File in questo prodotto:
File Dimensione Formato  
s00180-024-01536-8.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact