Objective. Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features. Approach. Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC). Results. The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy−1 outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy−1 by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detecto...
Dosimetry of microbeam radiotherapy by flexible hydrogenated amorphous silicon detectors
Lucio Calcagnile;Anna Paola Caricato;Nicola Lovecchio;Maurizio Martino;Giuseppe Maruccio;Anna Grazia Monteduro;Francesco Moscatelli;Maddalena Pedio;Francesca Peverini;Silvia Rizzato;Leonello Servoli;Nicola Zema;
2024
Abstract
Objective. Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features. Approach. Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC). Results. The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy−1 outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy−1 by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detecto...File | Dimensione | Formato | |
---|---|---|---|
Large_2024_Phys._Med._Biol._69_155022.pdf
accesso aperto
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.