: In this work, we introduce a generalization of the Landauer bound for erasure processes that stems from absolutely irreversible dynamics. Assuming that the erasure process is carried out in an absolutely irreversible way so that the probability of observing some trajectories is zero in the forward process but finite in the reverse process, we derive a generalized form of the bound for the average erasure work, which is valid also for imperfect erasure and asymmetric bits. The generalized bound obtained is tighter than or, at worst, as tight as existing ones. Our theoretical predictions are supported by numerical experiments and the comparison with data from previous works.
Generalized Landauer bound from absolute irreversibility
Gherardini, StefanoUltimo
2024
Abstract
: In this work, we introduce a generalization of the Landauer bound for erasure processes that stems from absolutely irreversible dynamics. Assuming that the erasure process is carried out in an absolutely irreversible way so that the probability of observing some trajectories is zero in the forward process but finite in the reverse process, we derive a generalized form of the bound for the average erasure work, which is valid also for imperfect erasure and asymmetric bits. The generalized bound obtained is tighter than or, at worst, as tight as existing ones. Our theoretical predictions are supported by numerical experiments and the comparison with data from previous works.File | Dimensione | Formato | |
---|---|---|---|
Generalized_Landauer_bound_from_absolute_irreversibility_PRE_109_024138_2024.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
532.91 kB
Formato
Adobe PDF
|
532.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.