: Strategies of renewable energy production from photosynthetic microorganisms are gaining great scientific interest as ecosustainable alternatives to fossil fuel depletion. Green microalgae have been thoroughly investigated as living components to convert solar energy into photocurrent in biophotovoltaic (BPV) cells. Conversely, the suitability of diatoms in BPV cells has been almost completely unexplored so far, despite being the most abundant class of photosynthetic microorganisms in phytoplankton and of their good adaptability and resistance to harsh environmental conditions, including dehydration, high salinity, nutrient starvation, temperature, or pH changes. Here, we demonstrate the suitability of a series of diatom species (Phaeodactylum tricornutum, Thalassiosira weissflogii, Fistulifera pelliculosa, and Cylindrotheca closterium), to act as biophotoconverters, coating the surface of indium tin oxide photoanodes in a model BPV cell. Effects of light intensity, cell density, total chlorophyll content, and concentration of the electrochemical mediator on photocurrent generation efficiency were investigated. Noteworthily, biophotoanodes coated with T. weissflogii diatoms are still photoactive after 15 days of dehydration and four rewetting cycles, contrary to analogue electrodes coated with the model green microalga Dunaliella tertiolecta. These results provide the first evidence that diatoms are suitable photosynthetic microorganisms for building highly desiccation-resistant biophotoanodes for durable BPV devices.

Living Diatom Microalgae for Desiccation-Resistant Electrodes in Biophotovoltaic Devices

Milano, Francesco;Buscemi, Gabriella;Grattieri, Matteo;
2024

Abstract

: Strategies of renewable energy production from photosynthetic microorganisms are gaining great scientific interest as ecosustainable alternatives to fossil fuel depletion. Green microalgae have been thoroughly investigated as living components to convert solar energy into photocurrent in biophotovoltaic (BPV) cells. Conversely, the suitability of diatoms in BPV cells has been almost completely unexplored so far, despite being the most abundant class of photosynthetic microorganisms in phytoplankton and of their good adaptability and resistance to harsh environmental conditions, including dehydration, high salinity, nutrient starvation, temperature, or pH changes. Here, we demonstrate the suitability of a series of diatom species (Phaeodactylum tricornutum, Thalassiosira weissflogii, Fistulifera pelliculosa, and Cylindrotheca closterium), to act as biophotoconverters, coating the surface of indium tin oxide photoanodes in a model BPV cell. Effects of light intensity, cell density, total chlorophyll content, and concentration of the electrochemical mediator on photocurrent generation efficiency were investigated. Noteworthily, biophotoanodes coated with T. weissflogii diatoms are still photoactive after 15 days of dehydration and four rewetting cycles, contrary to analogue electrodes coated with the model green microalga Dunaliella tertiolecta. These results provide the first evidence that diatoms are suitable photosynthetic microorganisms for building highly desiccation-resistant biophotoanodes for durable BPV devices.
2024
Istituto di Scienze delle Produzioni Alimentari - ISPA - Sede Secondaria di Lecce
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Bari
biophotoelectrochemical cell, biophotoanodes, photocurrent, diatom microalgae. dryness resistance
File in questo prodotto:
File Dimensione Formato  
2024 Living diatom microalgae for desiccation resistant electrodes in BPV.pdf

solo utenti autorizzati

Descrizione: Manscritto principale
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2024 Living diatom microalgae for desiccation resistant electrodes in BPV_si.pdf

accesso aperto

Descrizione: Supportin information
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 636.76 kB
Formato Adobe PDF
636.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/511640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact