Liquid crystal films play a key role in advancing next-generation optical and photonic devices that require a precise in-plane modulation of optical anisotropy. This study employs multiphoton direct laser writing, a high-resolution three-dimensional (3D) printing method, to fabricate pseudoperiodic patterns of lines and grooves on glass surfaces for the in-plane alignment of liquid crystal films. Single layers of lines with submicron thickness and line spacing were fabricated in less than half an hour and forced the in-plane alignment of a liquid crystal film with a thickness of about 10 mu m. We validate the method on patterns with singular topologies designed to induce the nucleation of disclination defects with a predetermined spatial arrangement, orientation, and topological strength. Compared to other surface patterning methods, high-resolution 3D printing provides the unique advantage of direct surface fabrication, enabling the creation of nonflat geometries such as terraces and lenses and expanding the design and functionalities of liquid crystal devices. We anticipate that this method will be used to create thin-film devices such as polarization gratings, beam steerers, and q-plates for manipulating polarized and structured light.

Surface Alignment of Liquid Crystal Films on Nanometer-Thick 3D-Printed Line Patterns with Arbitrary Topologies: Implications for Polarization Gratings, Q-Plates, and Beam Steerers

Zappone, Bruno
Conceptualization
;
Ritacco, Tiziana;De Santo, Maria Penelope;Giocondo, Michele
2024

Abstract

Liquid crystal films play a key role in advancing next-generation optical and photonic devices that require a precise in-plane modulation of optical anisotropy. This study employs multiphoton direct laser writing, a high-resolution three-dimensional (3D) printing method, to fabricate pseudoperiodic patterns of lines and grooves on glass surfaces for the in-plane alignment of liquid crystal films. Single layers of lines with submicron thickness and line spacing were fabricated in less than half an hour and forced the in-plane alignment of a liquid crystal film with a thickness of about 10 mu m. We validate the method on patterns with singular topologies designed to induce the nucleation of disclination defects with a predetermined spatial arrangement, orientation, and topological strength. Compared to other surface patterning methods, high-resolution 3D printing provides the unique advantage of direct surface fabrication, enabling the creation of nonflat geometries such as terraces and lenses and expanding the design and functionalities of liquid crystal devices. We anticipate that this method will be used to create thin-film devices such as polarization gratings, beam steerers, and q-plates for manipulating polarized and structured light.
2024
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Rende (CS)
liquid crystals; direct laser writing; surface patterning; alignment; topological defects
File in questo prodotto:
File Dimensione Formato  
zappone-et-al-2024-surface-alignment-of-liquid-crystal-films-on-nanometer-thick-3d-printed-line-patterns-with-arbitrary_reduced.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact