This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.
Quantum Dot Transfer from the Organic Phase to Acrylic Monomers for the Controlled Integration of Single-Photon Sources by Photopolymerization
Ritacco, Tiziana;Lio, Giuseppe Emanuele;Giocondo, Michele;
2023
Abstract
This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.File | Dimensione | Formato | |
---|---|---|---|
issa-et-al-2023-quantum-dot-transfer-from-the-organic-phase-to-acrylic-monomers-for-the-controlled-integration-of.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
9.26 MB
Formato
Adobe PDF
|
9.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.