Quantum computers are operated by external driving fields, such as lasers, microwaves, or transmission lines, that execute logical operations on multiqubit registers, leaving the system in a pure state. However, the drive and the logical system might become correlated in such a way that, after tracing out the degrees of freedom of the driving field, the output state will not be pure. Previous works have pointed out that the resulting error scales inversely with the energy of the drive, thus imposing a limit on the energy efficiency of quantum computing. In this study, focusing on the Jaynes-Cummings model, we show how the same scaling can be seen as a consequence of two competing phenomena: the entanglement-induced error, which grows with time, and a minimal time for computation imposed by quantum speed limits. This evidence is made possible by quantifying, at any time, the computation error via the spectral radius associated with the density operator of the logical qubit. Moreover, we also prove that, in order to attain a given target state at a chosen fidelity, it is energetically more efficient to perform a single driven evolution of the logical qubits rather than to split the computation in subroutines, each operated by a dedicated pulse.

Competition of decoherence and quantum speed limits for quantum-gate fidelity in the Jaynes-Cummings model

Gherardini, Stefano
2024

Abstract

Quantum computers are operated by external driving fields, such as lasers, microwaves, or transmission lines, that execute logical operations on multiqubit registers, leaving the system in a pure state. However, the drive and the logical system might become correlated in such a way that, after tracing out the degrees of freedom of the driving field, the output state will not be pure. Previous works have pointed out that the resulting error scales inversely with the energy of the drive, thus imposing a limit on the energy efficiency of quantum computing. In this study, focusing on the Jaynes-Cummings model, we show how the same scaling can be seen as a consequence of two competing phenomena: the entanglement-induced error, which grows with time, and a minimal time for computation imposed by quantum speed limits. This evidence is made possible by quantifying, at any time, the computation error via the spectral radius associated with the density operator of the logical qubit. Moreover, we also prove that, in order to attain a given target state at a chosen fidelity, it is energetically more efficient to perform a single driven evolution of the logical qubits rather than to split the computation in subroutines, each operated by a dedicated pulse.
2024
Istituto Nazionale di Ottica - INO
Jaynes-Cummings model, quantum speed limit, quantum-gate fidelity, external driving field, entanglement-induced error, energetic efficiency
File in questo prodotto:
File Dimensione Formato  
Competition_decoherence_quantum_speed_limits_quantum-gate_fidelity_Jaynes-Cummings_model_PRR_6_023296_2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 752.88 kB
Formato Adobe PDF
752.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact