Feature extraction and selection from medical data are the basis of radiomics and image biomarker discovery for various architectures, including convolutional neural networks (CNNs). We herein describe the typical radiomics steps and the components of a CNN for both deep feature extraction and end-to-end approaches. We discuss the curse of dimensionality, along with dimensionality reduction techniques. Despite the outstanding performance of deep learning (DL) approaches, the use of handcrafted features instead of deep learned features needs to be considered for each specific study. Dataset size is a key factor: large-scale datasets with low sample diversity could lead to overfitting; limited sample sizes can provide unstable models. The dataset must be representative of all the “facets” of the clinical phenomenon/disease investigated. The access to the high-performance computational resources from graphics processing units is another key factor, especially for the training phase of deep architectures. The advantages of multi-institutional federated/collaborative learning are described. When large language models are used, high stability is needed to avoid catastrophic forgetting in complex domain-specific tasks. We highlight that non-DL approaches provide model explainability superior to that provided by DL approaches. To implement explainability, the need for explainable AI arises, also through post hoc mechanisms.

Image biomarkers and explainable AI: handcrafted features versus deep learned features

Leonardo Rundo
Primo
;
Carmelo Militello
Ultimo
2024

Abstract

Feature extraction and selection from medical data are the basis of radiomics and image biomarker discovery for various architectures, including convolutional neural networks (CNNs). We herein describe the typical radiomics steps and the components of a CNN for both deep feature extraction and end-to-end approaches. We discuss the curse of dimensionality, along with dimensionality reduction techniques. Despite the outstanding performance of deep learning (DL) approaches, the use of handcrafted features instead of deep learned features needs to be considered for each specific study. Dataset size is a key factor: large-scale datasets with low sample diversity could lead to overfitting; limited sample sizes can provide unstable models. The dataset must be representative of all the “facets” of the clinical phenomenon/disease investigated. The access to the high-performance computational resources from graphics processing units is another key factor, especially for the training phase of deep architectures. The advantages of multi-institutional federated/collaborative learning are described. When large language models are used, high stability is needed to avoid catastrophic forgetting in complex domain-specific tasks. We highlight that non-DL approaches provide model explainability superior to that provided by DL approaches. To implement explainability, the need for explainable AI arises, also through post hoc mechanisms.
2024
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR - Sede Secondaria Palermo
Biomarkers
Diagnostic imaging
Machine learning
Neural networks
Radiomics
File in questo prodotto:
File Dimensione Formato  
s41747-024-00529-y.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 845.51 kB
Formato Adobe PDF
845.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact