Gold nanoparticles (GNPs) can be patterned on specific positions and substrates by Multi-Photon Direct Laser Writing (MP-DLW) in wet polymeric matrices doped with tetrachloroauric acid (HAuCl4) as gold precursor. The Hamaker constants describing the GNP-GNP interaction and the interaction between the GNPs and the surrounding materials is described, defining the role of the polymeric matrix; thus, its limits and the advantages are thoroughly analysed. The Multi-Photon Photo-Reduction (MPPR) process, leading to the GNPs creation, triggers a local temperature rising, which can ablate the polymer and influences the particle distribution, size and density. The GNPs polydispersity also depends on the water content in the film, variable because of the vaporization. A protocol to perform MP-DLW of GNPs, without the use of the polymer is illustrated: by treating the surface with a surfactant, it is possible to make the particles stick to the substrate, control their size and reduce the diffusive and convective effects generated by the MPPR.

Role of the Polymeric Matrix and Surface Affinity During Gold Nanoparticles Patterning by Multi-Photon Photo-Reduction

Ritacco, Tiziana
Primo
;
Pagliusi, Pasquale
;
Giocondo, Michele
Ultimo
Conceptualization
2022

Abstract

Gold nanoparticles (GNPs) can be patterned on specific positions and substrates by Multi-Photon Direct Laser Writing (MP-DLW) in wet polymeric matrices doped with tetrachloroauric acid (HAuCl4) as gold precursor. The Hamaker constants describing the GNP-GNP interaction and the interaction between the GNPs and the surrounding materials is described, defining the role of the polymeric matrix; thus, its limits and the advantages are thoroughly analysed. The Multi-Photon Photo-Reduction (MPPR) process, leading to the GNPs creation, triggers a local temperature rising, which can ablate the polymer and influences the particle distribution, size and density. The GNPs polydispersity also depends on the water content in the film, variable because of the vaporization. A protocol to perform MP-DLW of GNPs, without the use of the polymer is illustrated: by treating the surface with a surfactant, it is possible to make the particles stick to the substrate, control their size and reduce the diffusive and convective effects generated by the MPPR.
2022
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Rende (CS)
Polymers, Gold, Substrates, Economic indicators, Gratings, Nanoparticles, Power lasers, 3D laser printing, gold nanoparticles, nanopatterning, multi-photon photo-reduction, polyvinyl alcohol
File in questo prodotto:
File Dimensione Formato  
Role_of_the_Polymeric_Matrix_and_Surface_Affinity_During_Gold_Nanoparticles_Patterning_by_Multi-Photon_Photo-Reduction.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact