Bio-inspired and biodegradable quantum optics scenarios constitute a pathway toward environmentally friendly front-end technologies. Such an inspiring perspective necessitates the replacement of classic gain materials with a biological counterpart like photoluminescent bacteria. It is easy to imagine that, in this case, a planar and cell-viable substitute of classic bulk solid-states resonators can be highly beneficial. In this paper a micro- and nano-photonic structuration of both a standard and a functionalized version of a typical bacterial growth medium (Luria-Bertani Agar – LBA) is successfully realized. Three structures belonging to the categories of photonic crystals are replicated, such as quasi-crystals and meta-surfaces, demonstrating how the proposed media can be used as templates for high-end photonic applications. The optical quality of the replicated structures is confirmed by far-field diffraction measurements. The structured growth media allow for a broad control of the surface wettability by accessing a so-called Wenzel state, in which the original hydrophilicity of a material is increased due to the photonic structuration. Finally, the suitability of the nano-structured LBA as a plasmonic platform is evidenced. The proposed micro-and nano-structured photonic growth media constitute the first, fundamental step toward quantum optical frameworks from biological media.

Micro- and Nano-Structured Bacteria Growth Media for Planar Bio-Photonics

Caligiuri V.;De Santo M.;Bruno M. D. L.;Pane A.;Petti L.;Bartolino R.;Annesi F.;De Luca A.
2024

Abstract

Bio-inspired and biodegradable quantum optics scenarios constitute a pathway toward environmentally friendly front-end technologies. Such an inspiring perspective necessitates the replacement of classic gain materials with a biological counterpart like photoluminescent bacteria. It is easy to imagine that, in this case, a planar and cell-viable substitute of classic bulk solid-states resonators can be highly beneficial. In this paper a micro- and nano-photonic structuration of both a standard and a functionalized version of a typical bacterial growth medium (Luria-Bertani Agar – LBA) is successfully realized. Three structures belonging to the categories of photonic crystals are replicated, such as quasi-crystals and meta-surfaces, demonstrating how the proposed media can be used as templates for high-end photonic applications. The optical quality of the replicated structures is confirmed by far-field diffraction measurements. The structured growth media allow for a broad control of the surface wettability by accessing a so-called Wenzel state, in which the original hydrophilicity of a material is increased due to the photonic structuration. Finally, the suitability of the nano-structured LBA as a plasmonic platform is evidenced. The proposed micro-and nano-structured photonic growth media constitute the first, fundamental step toward quantum optical frameworks from biological media.
2024
Istituto di Nanotecnologia - NANOTEC - Sede Secondaria Rende (CS)
cell-viable metasurfaces; cell-viable photonic crystals; Luria-Bertani-Agar nanostructures; Luria-Bertani-Agar photonic structures; nano-structured growth medium
File in questo prodotto:
File Dimensione Formato  
Advance Optical Material 2023_Micro- and Nano-Structured Bacteria Growth Media for Planar Bio-Photonics.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact