Water covers, in different states, about 70% of the earth’s surface; in the form of water vapor, along with oxygen and nitrogen, it is one of the main components of the atmosphere. The water contained in the atmosphere can be considered the producing element of atmospheric phenomena, due to its properties of absorbing, conserving, and returning large quantities of thermal energy. The hygrometric state of the atmosphere affects, with temperature, the formation of hydrometeors. The history of instruments, measuring the amount of water vapor present in the atmosphere, is long and complex. The first ones carried out exploited the properties of hygroscopic substances that absorb and release the water present in the air with alterations in their dimensions or weight. The first instruments are due to Nicholas of Cusa who, around 1430, proposed to measure the air humidity by the variation in weight of a wool bale, and to Leonardo da Vinci who built a balance hygroscope (around 1500). Only in the 17th century, modern theoretical and experimental hygrometry began with the measuring instruments proposed by F. Folli, the Grand Duke of Tuscany Ferdinando II de’ Medici and the scholars of the “Accademia del Cimento”. At the end of the 18th century H. B. de Saussure carried out the hair hygrometer (1780). In the 19th century, condensation hygrometers were created, such as the one designed by J. F. Daniell (1820), improved by H. V. Régnault (1845). In 1825 E. F. August carried out a psychrometer, refined by R. Assman in 1887; this latter allowed the relative humidity to be measured more precisely by psychrometric formulas more representative of the phenomenon. At the end of the 19th century, hygrometers, like other meteorological instruments, were made according to internationally established standards. In the 20th century there was further development through both the use of newly developed sensors and, in the last decade, the use of microprocessors. The application of these technologies has allowed the design and production of instruments that measure the relative humidity of the air with an error between 0,2 and 1%.

La storia degli strumenti misuratori della quantità di vapore acqueo presente nell’atmosfera abbraccia un intervallo temporale di circa sei secoli. Le prime realizzazioni strumentali si devono a Niccolò Cusano che, nel 1430 circa, propose di misurare l’umidità dell’aria mediante la variazione di peso di una balla di lana e a Leonardo da Vinci che, nel 1500 circa, costruì un igroscopio a bilancia. Solo nel Seicento, con gli strumenti di misura proposti da F. Folli, da Ferdinando II de’ Medici, granduca di Toscana, e dagli studiosi dell’Accademia del Cimento, iniziò la moderna igrometria teorica e sperimentale. La fine del Settecento vide la realizzazione dell’igrometro a capelli di H.B. de Saussure, nel 1780. Nell’Ottocento furono realizzati igrometri a condensazione, come quello ideato da J. F. Daniell, nel 1820, e perfezionato da H.V. Régnault nel 1845. Nel 1825 E. F. August realizzò uno psicrometro, migliorato da R. Assman nel 1887; ciò consentì, mediante l’uso di formule psicrometriche più rappresentative del fenomeno, di misurare e di calcolare con maggiore precisione l’umidità relativa. Alla fine dell’Ottocento gli igrometri, come altri strumenti meteorologici, furono realizzati secondo standard fissati dall’Organizzazione Meteorologica Internazionale. Nel Novecento si ebbe uno sviluppo ulteriore mediante sia l’impiego di sensori di nuova concezione sia, nell’ultimo decennio, l’utilizzo di microprocessori. Usando queste tecnologie furono realizzati strumenti che riuscirono a misurare l’umidità relativa dell’aria con una incertezza di misura compresa fra 0,2 e 1%.

Gli strumenti di misura per l’igrometria dal XV al XX secolo

Matteo De Vincenzi
Primo
;
Gianni Fasano
Secondo
2024

Abstract

Water covers, in different states, about 70% of the earth’s surface; in the form of water vapor, along with oxygen and nitrogen, it is one of the main components of the atmosphere. The water contained in the atmosphere can be considered the producing element of atmospheric phenomena, due to its properties of absorbing, conserving, and returning large quantities of thermal energy. The hygrometric state of the atmosphere affects, with temperature, the formation of hydrometeors. The history of instruments, measuring the amount of water vapor present in the atmosphere, is long and complex. The first ones carried out exploited the properties of hygroscopic substances that absorb and release the water present in the air with alterations in their dimensions or weight. The first instruments are due to Nicholas of Cusa who, around 1430, proposed to measure the air humidity by the variation in weight of a wool bale, and to Leonardo da Vinci who built a balance hygroscope (around 1500). Only in the 17th century, modern theoretical and experimental hygrometry began with the measuring instruments proposed by F. Folli, the Grand Duke of Tuscany Ferdinando II de’ Medici and the scholars of the “Accademia del Cimento”. At the end of the 18th century H. B. de Saussure carried out the hair hygrometer (1780). In the 19th century, condensation hygrometers were created, such as the one designed by J. F. Daniell (1820), improved by H. V. Régnault (1845). In 1825 E. F. August carried out a psychrometer, refined by R. Assman in 1887; this latter allowed the relative humidity to be measured more precisely by psychrometric formulas more representative of the phenomenon. At the end of the 19th century, hygrometers, like other meteorological instruments, were made according to internationally established standards. In the 20th century there was further development through both the use of newly developed sensors and, in the last decade, the use of microprocessors. The application of these technologies has allowed the design and production of instruments that measure the relative humidity of the air with an error between 0,2 and 1%.
2024
Istituto per la BioEconomia - IBE
978-88-86638-94-4
La storia degli strumenti misuratori della quantità di vapore acqueo presente nell’atmosfera abbraccia un intervallo temporale di circa sei secoli. Le prime realizzazioni strumentali si devono a Niccolò Cusano che, nel 1430 circa, propose di misurare l’umidità dell’aria mediante la variazione di peso di una balla di lana e a Leonardo da Vinci che, nel 1500 circa, costruì un igroscopio a bilancia. Solo nel Seicento, con gli strumenti di misura proposti da F. Folli, da Ferdinando II de’ Medici, granduca di Toscana, e dagli studiosi dell’Accademia del Cimento, iniziò la moderna igrometria teorica e sperimentale. La fine del Settecento vide la realizzazione dell’igrometro a capelli di H.B. de Saussure, nel 1780. Nell’Ottocento furono realizzati igrometri a condensazione, come quello ideato da J. F. Daniell, nel 1820, e perfezionato da H.V. Régnault nel 1845. Nel 1825 E. F. August realizzò uno psicrometro, migliorato da R. Assman nel 1887; ciò consentì, mediante l’uso di formule psicrometriche più rappresentative del fenomeno, di misurare e di calcolare con maggiore precisione l’umidità relativa. Alla fine dell’Ottocento gli igrometri, come altri strumenti meteorologici, furono realizzati secondo standard fissati dall’Organizzazione Meteorologica Internazionale. Nel Novecento si ebbe uno sviluppo ulteriore mediante sia l’impiego di sensori di nuova concezione sia, nell’ultimo decennio, l’utilizzo di microprocessori. Usando queste tecnologie furono realizzati strumenti che riuscirono a misurare l’umidità relativa dell’aria con una incertezza di misura compresa fra 0,2 e 1%.
Storia della tecnologia; igrometria; storia della scienza; meteorologia
File in questo prodotto:
File Dimensione Formato  
DeVincenzi FasanoAtti_AISI_2024_Tomi_1_2_3_R-1.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 388.64 kB
Formato Adobe PDF
388.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact