Laboratory-prepared Gnp using molten salt, commercial Gnp and reduced graphene oxide (rGO) have been characterized and utilized as support for CO2 hydrogenation catalysts. Ni- and Ru- catalysts supported over Gnp, commercial Gnp and rGO have been deeply characterized at different stages using Raman, IR, XRD, FE-SEM-EDXS, SEM-EDXS, XPS, and TEM, also addressing carbon loss before reaction and evolved species, thus allowing a better comprehension of the produced materials. Ni and Ru/rGO were inactive while Gnp-supported ones were active. Ru has been found almost completely selective toward reverse Water Gas Shift to CO, approaching the forecasted thermodynamic equilibrium at 723 K, in the tested conditions (YCO~55 %), with an apparent activation energy in the range of 70-90 kJ/mol. Exhaust catalysts pointed out the presence of sulfur partially linked to the carbon matrix and partially producing the corresponding metal sulfide with the detection of surface oxidized species in the cationic form and adsorbed species as well. The metal-based nanoparticles displayed a quite narrow size distribution, confirming the promising behavior of these catalytic systems for CO2 utilization.

Graphene‐Based Material Supports for Ni− and Ru− Catalysts in CO2 Hydrogenation: Ruling out Performances and Impurity Role

Savio, Letizia;Vattuone, Luca;
2024

Abstract

Laboratory-prepared Gnp using molten salt, commercial Gnp and reduced graphene oxide (rGO) have been characterized and utilized as support for CO2 hydrogenation catalysts. Ni- and Ru- catalysts supported over Gnp, commercial Gnp and rGO have been deeply characterized at different stages using Raman, IR, XRD, FE-SEM-EDXS, SEM-EDXS, XPS, and TEM, also addressing carbon loss before reaction and evolved species, thus allowing a better comprehension of the produced materials. Ni and Ru/rGO were inactive while Gnp-supported ones were active. Ru has been found almost completely selective toward reverse Water Gas Shift to CO, approaching the forecasted thermodynamic equilibrium at 723 K, in the tested conditions (YCO~55 %), with an apparent activation energy in the range of 70-90 kJ/mol. Exhaust catalysts pointed out the presence of sulfur partially linked to the carbon matrix and partially producing the corresponding metal sulfide with the detection of surface oxidized species in the cationic form and adsorbed species as well. The metal-based nanoparticles displayed a quite narrow size distribution, confirming the promising behavior of these catalytic systems for CO2 utilization.
2024
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM - Sede Secondaria Genova
CO2hydrogenation,
Carbon-based,
Heterogeneous catalysis,
Molten salt,
Supported catalysts,
rWGS
File in questo prodotto:
File Dimensione Formato  
Graphene-Based Material Supports for Ni- and Ru- Catalysts in CO2 Hydrogenation: Ruling out Performances and Impurity Role.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/513645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact