The surprisingly low current density required for inducing the insulator to metal transition has made Ca2RuO4 an attractive candidate material for developing Mott-based electronics devices. The mechanism driving the resistive switching, however, remains a controversial topic in the field of strongly correlated electron systems. Here we probe an uncovered region of phase space by studying high-purity Ca2RuO4 single crystals, using the sample size as principal tuning parameter. Upon reducing the crystal size, we find a four orders of magnitude increase in the current density required for driving Ca2RuO4 out of the insulating state into a non-equilibrium phase which is the precursor to the fully metallic phase. By integrating a microscopic platinum thermometer and performing thermal simulations, we gain insight into the local temperature during simultaneous application of current and establish that the size dependence is not a result of Joule heating. The findings suggest an inhomogeneous current distribution in the nominally homogeneous crystal. Our study calls for a reexamination of the interplay between sample size, charge current, and temperature in driving Ca2RuO4 towards the Mott insulator to metal transition.

Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca2RuO4

Granata, V.;Fittipaldi, R.;Cirillo, C.;Attanasio, C.;Vecchione, A.
Penultimo
;
2021

Abstract

The surprisingly low current density required for inducing the insulator to metal transition has made Ca2RuO4 an attractive candidate material for developing Mott-based electronics devices. The mechanism driving the resistive switching, however, remains a controversial topic in the field of strongly correlated electron systems. Here we probe an uncovered region of phase space by studying high-purity Ca2RuO4 single crystals, using the sample size as principal tuning parameter. Upon reducing the crystal size, we find a four orders of magnitude increase in the current density required for driving Ca2RuO4 out of the insulating state into a non-equilibrium phase which is the precursor to the fully metallic phase. By integrating a microscopic platinum thermometer and performing thermal simulations, we gain insight into the local temperature during simultaneous application of current and establish that the size dependence is not a result of Joule heating. The findings suggest an inhomogeneous current distribution in the nominally homogeneous crystal. Our study calls for a reexamination of the interplay between sample size, charge current, and temperature in driving Ca2RuO4 towards the Mott insulator to metal transition.
2021
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Fisciano
Transport properties, Mott insulators, ruthenates
File in questo prodotto:
File Dimensione Formato  
189 - Universal size-dependent nonlinear charge transport in single crystals of the Mott insulator Ca2RuO4 - npj quantum materials 2021b.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact