Tissue engineering (TE) and nanomedicine require devices with hydrophilic surfaces to better interact with the biological environment. This work presents a study on the wettability of cubic silicon-carbide-based (SiC) surfaces. We developed four cubic silicon-carbide-based epitaxial layers and three nanowire (NW) substrates. Sample morphologies were analyzed, and their wettabilities were quantified before and after a hydrogen plasma treatment to remove impurities due to growth residues and enhance hydrophilicity. Moreover, sample biocompatibility has been assessed with regard to L929 cells. Our results showed that core–shell nanowires (SiO2/SiC NWs), with and without hydrogen plasma treatment, are the most suitable candidate material for biological applications due to their high wettability that is not influenced by specific treatments. Biological tests underlined the non-toxicity of the developed biomaterials with regard to murine fibroblasts, and the proliferation assay highlighted the efficacy of all the surfaces with regard to murine osteoblasts. In conclusion, SiO2/SiC NWs offer a suitable substrate to develop platforms and membranes useful for biomedical applications in tissue engineering due to their peculiar characteristics.

SiO2/SiC Nanowire Surfaces as a Candidate Biomaterial for Bone Regeneration

Attolini G.;Bosi M.;Lagonegro P.;Macaluso G. M.;Lumetti S.
2023

Abstract

Tissue engineering (TE) and nanomedicine require devices with hydrophilic surfaces to better interact with the biological environment. This work presents a study on the wettability of cubic silicon-carbide-based (SiC) surfaces. We developed four cubic silicon-carbide-based epitaxial layers and three nanowire (NW) substrates. Sample morphologies were analyzed, and their wettabilities were quantified before and after a hydrogen plasma treatment to remove impurities due to growth residues and enhance hydrophilicity. Moreover, sample biocompatibility has been assessed with regard to L929 cells. Our results showed that core–shell nanowires (SiO2/SiC NWs), with and without hydrogen plasma treatment, are the most suitable candidate material for biological applications due to their high wettability that is not influenced by specific treatments. Biological tests underlined the non-toxicity of the developed biomaterials with regard to murine fibroblasts, and the proliferation assay highlighted the efficacy of all the surfaces with regard to murine osteoblasts. In conclusion, SiO2/SiC NWs offer a suitable substrate to develop platforms and membranes useful for biomedical applications in tissue engineering due to their peculiar characteristics.
2023
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
bone regeneration, hydrogen plasma treatment, hydrophilic surfaces, nanowires, silicon carbide
File in questo prodotto:
File Dimensione Formato  
SiO2_SiC Nanowire Surfaces as a Candidate Biomaterial for bone regenertation.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.29 MB
Formato Adobe PDF
5.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact