The paper introduces computer vision methods for automating the detection, recognition, and classification of Nephrops norvegicus burrows in underwater videos. This approach aims to improve accuracy, reduce human errors, and standardize the current manual video analysis process. By using machine learning techniques, the system can automatically process video streams and detect N. norvegicus burrow openings on the seabed. The work also explores the use of data augmentation algorithms to extend the annotated data set, enhancing the performance of the automated system compared to the original manual annotations.
Advancing automated detection of Nephrops norvegicus burrows in underwater television surveys through machine learning
Papini O.
;Cecapolli E.;Domenichetti F.;Martinelli M.;Pieri G.;Reggiannini M.;Zacchetti L.
2025
Abstract
The paper introduces computer vision methods for automating the detection, recognition, and classification of Nephrops norvegicus burrows in underwater videos. This approach aims to improve accuracy, reduce human errors, and standardize the current manual video analysis process. By using machine learning techniques, the system can automatically process video streams and detect N. norvegicus burrow openings on the seabed. The work also explores the use of data augmentation algorithms to extend the annotated data set, enhancing the performance of the automated system compared to the original manual annotations.| File | Dimensione | Formato | |
|---|---|---|---|
|
Paper IMTA_20241202.pdf
embargo fino al 06/04/2026
Descrizione: Postprint - Advancing Automated Detection of Nephrops norvegicus...
Tipologia:
Documento in Post-print
Licenza:
Altro tipo di licenza
Dimensione
569.19 kB
Formato
Adobe PDF
|
569.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Papini et al. - Advancing Automated Detection of Nephrops norvegicus Burrows in Underwater Television Surveys through Machine Learning.pdf
non disponibili
Descrizione: Published version
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
671.65 kB
Formato
Adobe PDF
|
671.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


