The paper introduces computer vision methods for automating the detection, recognition, and classification of Nephrops norvegicus burrows in underwater videos. This approach aims to improve accuracy, reduce human errors, and standardize the current manual video analysis process. By using machine learning techniques, the system can automatically process video streams and detect N. norvegicus burrow openings on the seabed. The work also explores the use of data augmentation algorithms to extend the annotated data set, enhancing the performance of the automated system compared to the original manual annotations.

Advancing automated detection of Nephrops norvegicus burrows in underwater television surveys through machine learning

Papini O.
;
Cecapolli E.;Domenichetti F.;Martinelli M.;Pieri G.;Reggiannini M.;Zacchetti L.
2024

Abstract

The paper introduces computer vision methods for automating the detection, recognition, and classification of Nephrops norvegicus burrows in underwater videos. This approach aims to improve accuracy, reduce human errors, and standardize the current manual video analysis process. By using machine learning techniques, the system can automatically process video streams and detect N. norvegicus burrow openings on the seabed. The work also explores the use of data augmentation algorithms to extend the annotated data set, enhancing the performance of the automated system compared to the original manual annotations.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Istituto per le Risorse Biologiche e le Biotecnologie Marine - IRBIM - Sede Secondaria Ancona
Deep learning, Video annotation, Dataset augmentation, Fisheries, Nephrops norvegicus
File in questo prodotto:
File Dimensione Formato  
Paper IMTA_20241202.pdf

accesso aperto

Descrizione: Accepted version
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 569.19 kB
Formato Adobe PDF
569.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact