The Fenton reaction is one of the most important processes for water and soil remediation, although this process has some drawbacks such as the use of H2 O2 in large amounts, the formation of sludge due to the use of iron salts, and the need for acid pH values. Here we present the use of a natural clay, modified by acid treatment, as a heterogeneous catalyst to replace soluble iron salts and to avoid the use of water peroxide, resulting in a considerable increase in the attractiveness of the process. Halloysite (HT) clay from the Dunino mine consists of alumina and silica layers with the presence of iron species acting as a source of Fe ions. The etching of alumina layers using hydrochloric acid induces the release of iron species (mainly ions) in the solution, giving rise to the photodegradation activity of organic contaminants in water (i.e., Methyl Orange, MO) under UV irradiation without the need for hydrogen peroxide and avoiding the formation of sludges. MO adsorption properties and MO photodegradation ability were investigated for untreated and acid treated samples, respectively, to achieve the optimal process conditions. MO was not adsorbed on the clay’s surface due to electrostatic repulsion, but a complete degradation was observed after three hours under UV irradiation. The kinetics of photodegradation and the values of the half-life time are presented as a measure of the degradation rate. The proposed process shows a new route for effective remediation of water containing biologically active organic substances dissolved in it.

Photo-Fenton Degradation of Methyl Orange with Dunino Halloysite as a Source of Iron

Filice, Simona;Bongiorno, Corrado;Libertino, Sebania;Scalese, Silvia
2022

Abstract

The Fenton reaction is one of the most important processes for water and soil remediation, although this process has some drawbacks such as the use of H2 O2 in large amounts, the formation of sludge due to the use of iron salts, and the need for acid pH values. Here we present the use of a natural clay, modified by acid treatment, as a heterogeneous catalyst to replace soluble iron salts and to avoid the use of water peroxide, resulting in a considerable increase in the attractiveness of the process. Halloysite (HT) clay from the Dunino mine consists of alumina and silica layers with the presence of iron species acting as a source of Fe ions. The etching of alumina layers using hydrochloric acid induces the release of iron species (mainly ions) in the solution, giving rise to the photodegradation activity of organic contaminants in water (i.e., Methyl Orange, MO) under UV irradiation without the need for hydrogen peroxide and avoiding the formation of sludges. MO adsorption properties and MO photodegradation ability were investigated for untreated and acid treated samples, respectively, to achieve the optimal process conditions. MO was not adsorbed on the clay’s surface due to electrostatic repulsion, but a complete degradation was observed after three hours under UV irradiation. The kinetics of photodegradation and the values of the half-life time are presented as a measure of the degradation rate. The proposed process shows a new route for effective remediation of water containing biologically active organic substances dissolved in it.
2022
Istituto per la Microelettronica e Microsistemi - IMM
Halloysite
PhotoFenton reaction
Water purification
File in questo prodotto:
File Dimensione Formato  
162 Filice Catalysts 2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/514917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact