Several systems display an equilibrium condensation transition, where a finite fraction of a conserved quantity is spatially localized. The presence of two conservation laws may induce the emergence of such transition in an out-of-equilibrium setup, where boundaries are attached to different and subcritical heat baths. We study this phenomenon in a class of stochastic lattice models, where the local energy is a general convex function of the local mass, mass and energy being both globally conserved in the isolated system. We obtain exact results for the nonequilibrium steady state (spatial profiles, mass and energy currents, Onsager coefficients) and we highlight important differences between equilibrium and out-of-equilibrium condensation.

Localization in Boundary-Driven Lattice Models

Iubini, Stefano;Politi, Paolo
2024

Abstract

Several systems display an equilibrium condensation transition, where a finite fraction of a conserved quantity is spatially localized. The presence of two conservation laws may induce the emergence of such transition in an out-of-equilibrium setup, where boundaries are attached to different and subcritical heat baths. We study this phenomenon in a class of stochastic lattice models, where the local energy is a general convex function of the local mass, mass and energy being both globally conserved in the isolated system. We obtain exact results for the nonequilibrium steady state (spatial profiles, mass and energy currents, Onsager coefficients) and we highlight important differences between equilibrium and out-of-equilibrium condensation.
2024
Istituto dei Sistemi Complessi - ISC - Sede Secondaria Sesto Fiorentino
Boundary-driven systems
Coupled transport processes
Localization/condensation in real space
Nonequilibrium steady state
Onsager coefficients
File in questo prodotto:
File Dimensione Formato  
jsp24.pdf

accesso aperto

Descrizione: Localization in Boundary-Driven Lattice Models
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact