We investigate the topological properties of a Kitaev chain in the shape of a legged-ring, which is here referred to as Kitaev tie. We demonstrate that the Kitaev tie is a frustrated system in which topological properties are determined by the position of the movable bond (the tie knot). We determine the phase diagram of the system as a function of the knot position and chemical potential, also discussing the effects of topological frustration. The stability of the topological Kitaev tie is addressed by a careful analysis of the system free energy.
Topological phases of a Kitaev tie
Maiellaro, Alfonso
;Citro, Roberta
2020
Abstract
We investigate the topological properties of a Kitaev chain in the shape of a legged-ring, which is here referred to as Kitaev tie. We demonstrate that the Kitaev tie is a frustrated system in which topological properties are determined by the position of the movable bond (the tie knot). We determine the phase diagram of the system as a function of the knot position and chemical potential, also discussing the effects of topological frustration. The stability of the topological Kitaev tie is addressed by a careful analysis of the system free energy.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2023_Maiellaro_2020__EPJST.pdf
accesso aperto
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


