The presented work is devoted to the preparation of nanocomposites based on multiwall carbon nanotubes (MWCNTs) and copper (Cu) nanoparticles by a simple chemical method, and to study their sensing properties to hydrogen sulfide (H2S) gas. The Cu decorated multiwall carbon nanotubes (MWCNTs/Cu) were prepared by the deposition of very thin Cu layers on the pristine and functionalized multiwall carbon nanotubes (f-MWCNTs) using both physical (electron beam evaporation (EBE)) and chemical (electrochemical deposition) methods. MWCNTs/Cu prepared in the two above-mentioned ways, their sensing properties were studied, and the results were comparatively analyzed. The effect of the chemical functionalization of MWCNTs by oxygen-containing groups on the sensing properties of these f-MWCNT/Cu nanocomposites has been investigated. All the prepared sensors demonstrated high sensitivity and selectivity to H2S in the air at room temperature. The f-MWCNT/Cu structure obtained by the chemical method demonstrated about 5 times (similar to 400%) higher sensitivity (increment R/R-0) to H2S gas compared to the similar structure obtained by the physical method. The temperature effect on sensory characteristics (response and self-recovery time) of the f-MWCNTs/Cu structure was also studied.

Highly Selective Detection of Hydrogen Sulfide by Simple Cu-CNTs Nanocomposites

Trevisi G.;
2023

Abstract

The presented work is devoted to the preparation of nanocomposites based on multiwall carbon nanotubes (MWCNTs) and copper (Cu) nanoparticles by a simple chemical method, and to study their sensing properties to hydrogen sulfide (H2S) gas. The Cu decorated multiwall carbon nanotubes (MWCNTs/Cu) were prepared by the deposition of very thin Cu layers on the pristine and functionalized multiwall carbon nanotubes (f-MWCNTs) using both physical (electron beam evaporation (EBE)) and chemical (electrochemical deposition) methods. MWCNTs/Cu prepared in the two above-mentioned ways, their sensing properties were studied, and the results were comparatively analyzed. The effect of the chemical functionalization of MWCNTs by oxygen-containing groups on the sensing properties of these f-MWCNT/Cu nanocomposites has been investigated. All the prepared sensors demonstrated high sensitivity and selectivity to H2S in the air at room temperature. The f-MWCNT/Cu structure obtained by the chemical method demonstrated about 5 times (similar to 400%) higher sensitivity (increment R/R-0) to H2S gas compared to the similar structure obtained by the physical method. The temperature effect on sensory characteristics (response and self-recovery time) of the f-MWCNTs/Cu structure was also studied.
2023
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
carbon nanotubes, MWCNTs, Cu, H2S, sensor, nanocomposite, decoration
File in questo prodotto:
File Dimensione Formato  
Highly Selective Detection of Hydrogen Sulfide by Simple Cu-CNTs Nanocomposites.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.49 MB
Formato Adobe PDF
5.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/516642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact