The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO2). The development of iron-based systems for CO2 capture and storage could effectively contribute to reducing CO2 emissions. A wide set of different iron oxides, such as hematite (Fe2O3), magnetite (Fe3O4), and wüstite (Fe(1−y)O) could in fact be employed for CO2 capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO2 capture, starting from Fe2O3, a reducing agent such as hydrogen (H2) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H2 and CO.

Reduction of Iron Oxides for CO2 Capture Materials

Fabozzi A.
Conceptualization
;
Cerciello F.
Writing – Original Draft Preparation
;
Senneca O.
Conceptualization
2024

Abstract

The iron industry is the largest energy-consuming manufacturing sector in the world, emitting 4–5% of the total carbon dioxide (CO2). The development of iron-based systems for CO2 capture and storage could effectively contribute to reducing CO2 emissions. A wide set of different iron oxides, such as hematite (Fe2O3), magnetite (Fe3O4), and wüstite (Fe(1−y)O) could in fact be employed for CO2 capture at room temperature and pressure upon an investigation of their capturing properties. In order to achieve the most functional iron oxide form for CO2 capture, starting from Fe2O3, a reducing agent such as hydrogen (H2) or carbon monoxide (CO) can be employed. In this review, we present the state-of-the-art and recent advances on the different iron oxide materials employed, as well as on their reduction reactions with H2 and CO.
2024
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS - Sede Secondaria Napoli
adsorption/desorption enhanced
CO2
capture
hematite
iron oxide
magnetite
wüstite
File in questo prodotto:
File Dimensione Formato  
energies-17-01673 (4).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.75 MB
Formato Adobe PDF
4.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact