The production of H2 from renewable sources represents a crucial challenge for the planet’s future to achieve net zero emissions and store renewable energy. A possible alternative to water electrolysis (WE), which requires high potential (E > 1.48 V) to trigger the oxygen evolution reaction (OER), would be alcohol electrochemical reforming (ER), which implies the oxidation of short organic molecules such as methanol or ethanol. In ER, energy must be supplied to the system, but from a thermodynamic point of view, the energy request for the methanol or ethanol oxidation reaction is much lower than that of the OER. To study this process, an in-house 50 wt.% Pt1Ru1/C anodic catalyst was easily synthesized according to the Pt sulphite complex route and the impregnation of a carbon support (Ketjenblack, KB) and a Ru precursor. X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, and Transmission Electron Microscopy (TEM) were used to characterize the structure, composition, and morphology of the catalyst. It appears that two distinct crystallographic phases of the Pt and Ru nanoparticles were encountered after the synthesis conducted by Ru impregnation. For the electrochemical measurements, ethanol electrooxidation (2 M CH3CH2OH) was studied first in a half cell with a rotating disc electrode (RDE) configuration under acid conditions and then in a direct ethanol electroreforming (or electrolysis) cell, equipped with a proton exchange membrane (PEM) as the electrolyte. The output current density was 0.93 A cm−2 at 1 V and 90 °C in 2 M ethanol. The remarkable current densities obtained in the alcohol electrolyzer at a low voltage are better than the actual state of the art for PEM ethanol ER.

Investigation of an Ethanol Electroreforming Cell Based on a Pt1Ru1/C Catalyst at the Anode

Lo Vecchio C.;Mosca E.;Trocino S.;Baglio V.
2024

Abstract

The production of H2 from renewable sources represents a crucial challenge for the planet’s future to achieve net zero emissions and store renewable energy. A possible alternative to water electrolysis (WE), which requires high potential (E > 1.48 V) to trigger the oxygen evolution reaction (OER), would be alcohol electrochemical reforming (ER), which implies the oxidation of short organic molecules such as methanol or ethanol. In ER, energy must be supplied to the system, but from a thermodynamic point of view, the energy request for the methanol or ethanol oxidation reaction is much lower than that of the OER. To study this process, an in-house 50 wt.% Pt1Ru1/C anodic catalyst was easily synthesized according to the Pt sulphite complex route and the impregnation of a carbon support (Ketjenblack, KB) and a Ru precursor. X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, and Transmission Electron Microscopy (TEM) were used to characterize the structure, composition, and morphology of the catalyst. It appears that two distinct crystallographic phases of the Pt and Ru nanoparticles were encountered after the synthesis conducted by Ru impregnation. For the electrochemical measurements, ethanol electrooxidation (2 M CH3CH2OH) was studied first in a half cell with a rotating disc electrode (RDE) configuration under acid conditions and then in a direct ethanol electroreforming (or electrolysis) cell, equipped with a proton exchange membrane (PEM) as the electrolyte. The output current density was 0.93 A cm−2 at 1 V and 90 °C in 2 M ethanol. The remarkable current densities obtained in the alcohol electrolyzer at a low voltage are better than the actual state of the art for PEM ethanol ER.
2024
Istituto di Tecnologie Avanzate per l'Energia - ITAE
alcohol electrolyzers
alcohol oxidation
direct ethanol electrolysis
electroreforming
hydrogen production
PtRu anode catalyst
File in questo prodotto:
File Dimensione Formato  
2024 Catalysts - Electroreforming.pdf

accesso aperto

Descrizione: Articolo in rivista: Catalysts
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact