Protic ionic liquids (PILs) show great potential as electrolyte components for energy storage devices. A comprehensive understanding of their transport properties must be achieved to optimize the design of safer and efficient electrolytes. This study focuses on a series of PILs based on the DBUH+ cation (protonated 1,8-diazabicyclo[5,4,0]‑undec-7-ene superbase) and three anions derived from strong acids: TFO− (triflate), IM14− (perfluorobutyl-trifluoromethylsulfonylimide) and TFSI− (bis(trifluoromethylsulfonyl)imide). Neat PILs and PILs doped with LiTFO, LiIM14, and LiTFSI were studied using temperature-dependent NMR diffusion and relaxation techniques. The ionicity of these systems was also evaluated. Results revealed that the dynamic behaviour of lithium ions, as well as ionicity, strongly depend on the structural features of the anions, particularly in the case of IM14−, whose main feature is the uneven distribution of the fluorinated sidegroups. The 19F relaxation rates in IM14− provide insights into the rotational reorientation of that anion. DBUH-IM14 exhibited diffusion coefficients lower than the expected ones on the basis of its viscosity, likely due to fluorophilic intermolecular interactions involving the fluorinated terminal groups. The presence of Li+ in the DBUH-IM14 electrolyte led to unexpected and relatively faster translational mobility of Li+ ions, resulting in a higher lithium apparent transference number. However, the trends observed in ionicity indicate a more complex interplay between intermolecular interactions and ion correlations. While DBUH-TFSI showed minimal effect of Li+ addition, DBUH-TFO and DBUH-IM14 exhibited a significant decrease in ionicity, possibly attributed to strong interactions between ions.

Unveiling the transport properties of protic ionic liquids: Lithium ion dynamics modulated by the anion fluorine reservoir

Triolo A.;
2024

Abstract

Protic ionic liquids (PILs) show great potential as electrolyte components for energy storage devices. A comprehensive understanding of their transport properties must be achieved to optimize the design of safer and efficient electrolytes. This study focuses on a series of PILs based on the DBUH+ cation (protonated 1,8-diazabicyclo[5,4,0]‑undec-7-ene superbase) and three anions derived from strong acids: TFO− (triflate), IM14− (perfluorobutyl-trifluoromethylsulfonylimide) and TFSI− (bis(trifluoromethylsulfonyl)imide). Neat PILs and PILs doped with LiTFO, LiIM14, and LiTFSI were studied using temperature-dependent NMR diffusion and relaxation techniques. The ionicity of these systems was also evaluated. Results revealed that the dynamic behaviour of lithium ions, as well as ionicity, strongly depend on the structural features of the anions, particularly in the case of IM14−, whose main feature is the uneven distribution of the fluorinated sidegroups. The 19F relaxation rates in IM14− provide insights into the rotational reorientation of that anion. DBUH-IM14 exhibited diffusion coefficients lower than the expected ones on the basis of its viscosity, likely due to fluorophilic intermolecular interactions involving the fluorinated terminal groups. The presence of Li+ in the DBUH-IM14 electrolyte led to unexpected and relatively faster translational mobility of Li+ ions, resulting in a higher lithium apparent transference number. However, the trends observed in ionicity indicate a more complex interplay between intermolecular interactions and ion correlations. While DBUH-TFSI showed minimal effect of Li+ addition, DBUH-TFO and DBUH-IM14 exhibited a significant decrease in ionicity, possibly attributed to strong interactions between ions.
2024
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Diffusivity
Electrolytes
Fluorinated domains
Ionicity
NMR relaxation
Protic ionic liquids
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0013468623017607-main.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact